PID Control System Design and Automatic Tuning using MATLAB/Simulink

PID Control System Design and Automatic Tuning using MATLAB/Simulink

Author: Liuping Wang

Publisher: John Wiley & Sons

Published: 2020-04-20

Total Pages: 366

ISBN-13: 1119469341

DOWNLOAD EBOOK

Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.


PID Control System Design and Automatic Tuning Using MATLAB/Simulink

PID Control System Design and Automatic Tuning Using MATLAB/Simulink

Author: Liuping Wang

Publisher: Wiley-IEEE Press

Published: 2020-03-10

Total Pages: 368

ISBN-13: 9781119469414

DOWNLOAD EBOOK

Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems--from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.


Linear Feedback Control

Linear Feedback Control

Author: Dingyu Xue

Publisher: SIAM

Published: 2007-01-01

Total Pages: 366

ISBN-13: 9780898718621

DOWNLOAD EBOOK

This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.


PID Control

PID Control

Author: Michael A Johnson

Publisher: Springer Science & Business Media

Published: 2005-12-28

Total Pages: 559

ISBN-13: 1846281482

DOWNLOAD EBOOK

The effectiveness of proportional-integral-derivative (PID) controllers for a large class of process systems has ensured their continued and widespread use in industry. Similarly there has been a continued interest from academia in devising new ways of approaching the PID tuning problem. To the industrial engineer and many control academics this work has previously appeared fragmented; but a key determinant of this literature is the type of process model information used in the PID tuning methods. PID Control presents a set of coordinated contributions illustrating methods, old and new, that cover the range of process model assumptions systematically. After a review of PID technology, these contributions begin with model-free methods, progress through non-parametric model methods (relay experiment and phase-locked-loop procedures), visit fuzzy-logic- and genetic-algorithm-based methods; introduce a novel subspace identification method before closing with an interesting set of parametric model techniques including a chapter on predictive PID controllers. Highlights of PID Control include: an introduction to PID control technology features and typical industrial implementations; chapter contributions ordered by the increasing quality of the model information used; novel PID control concepts for multivariable processes. PID Control will be useful to industry-based engineers wanting a better understanding of what is involved in the steps to a new generation of PID controller techniques. Academics wishing to have a broader perspective of PID control research and development will find useful pedagogical material and research ideas in this text.


Process Control

Process Control

Author: B. Wayne Bequette

Publisher: Prentice Hall Professional

Published: 2003

Total Pages: 804

ISBN-13: 9780133536409

DOWNLOAD EBOOK

Master process control hands on, through practical examples and MATLAB(R) simulations This is the first complete introduction to process control that fully integrates software tools--enabling professionals and students to master critical techniques hands on, through computer simulations based on the popular MATLAB environment. Process Control: Modeling, Design, and Simulation teaches the field's most important techniques, behaviors, and control problems through practical examples, supplemented by extensive exercises--with detailed derivations, relevant software files, and additional techniques available on a companion Web site. Coverage includes: Fundamentals of process control and instrumentation, including objectives, variables, and block diagrams Methodologies for developing dynamic models of chemical processes Dynamic behavior of linear systems: state space models, transfer function-based models, and more Feedback control; proportional, integral, and derivative (PID) controllers; and closed-loop stability analysis Frequency response analysis techniques for evaluating the robustness of control systems Improving control loop performance: internal model control (IMC), automatic tuning, gain scheduling, and enhancements to improve disturbance rejection Split-range, selective, and override strategies for switching among inputs or outputs Control loop interactions and multivariable controllers An introduction to model predictive control (MPC) Bequette walks step by step through the development of control instrumentation diagrams for an entire chemical process, reviewing common control strategies for individual unit operations, then discussing strategies for integrated systems. The book also includes 16 learning modules demonstrating how to use MATLAB and SIMULINK to solve several key control problems, ranging from robustness analyses to biochemical reactors, biomedical problems to multivariable control.


Control Engineering

Control Engineering

Author: László Keviczky

Publisher: Springer

Published: 2018-10-04

Total Pages: 545

ISBN-13: 9811082979

DOWNLOAD EBOOK

This book offers fundamental information on the analysis and synthesis of continuous and sampled data control systems. It includes all the required preliminary materials (from mathematics, signals and systems) that are needed in order to understand control theory, so readers do not have to turn to other textbooks. Sampled data systems have recently gained increasing importance, as they provide the basis for the analysis and design of computer-controlled systems. Though the book mainly focuses on linear systems, input/output approaches and state space descriptions are also provided. Control structures such as feedback, feed forward, internal model control, state feedback control, and the Youla parameterization approach are discussed, while a closing section outlines advanced areas of control theory. Though the book also contains selected examples, a related exercise book provides Matlab/Simulink exercises for all topics discussed in the textbook, helping readers to understand the theory and apply it in order to solve control problems. Thanks to this combination, readers will gain a basic grasp of systems and control, and be able to analyze and design continuous and discrete control systems.


PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink

PID and Predictive Control of Electrical Drives and Power Converters using MATLAB / Simulink

Author: Liuping Wang

Publisher: John Wiley & Sons

Published: 2015-03-02

Total Pages: 369

ISBN-13: 1118339444

DOWNLOAD EBOOK

A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains sections on closed-loop performance analysis in both frequency domain and time domain, presented to help the designer in selection of controller parameters and validation of the control system. Continuous-time model predictive control systems are designed for the drives and power supplies, and operational constraints are imposed in the design. Discrete-time model predictive control systems are designed based on the discretization of the physical models, which will appeal to readers who are more familiar with sampled-data control system. Soft sensors and observers will be discussed for low cost implementation. Resonant control of the electric drives and power supply will be discussed to deal with the problems of bias in sensors and unbalanced three phase AC currents. Brings together both classical control systems and predictive control systems in a logical style from introductory through to advanced levels Demonstrates how simulation and experimental results are used to support theoretical analysis and the proposed design algorithms MATLAB and Simulink tutorials are given in each chapter to show the readers how to take the theory to applications. Includes MATLAB and Simulink software using xPC Target for teaching purposes A companion website is available Researchers and industrial engineers; and graduate students on electrical engineering courses will find this a valuable resource.


PID Control for Industrial Processes

PID Control for Industrial Processes

Author: Mohammad Shamsuzzoha

Publisher: BoD – Books on Demand

Published: 2018-09-12

Total Pages: 220

ISBN-13: 1789237009

DOWNLOAD EBOOK

PID Control for Industrial Processes presents a clear, multidimensional representation of proportional - integral - derivative (PID) control for both students and specialists working in the area of PID control. It mainly focuses on the theory and application of PID control in industrial processes. It incorporates recent developments in PID control technology in industrial practice. Emphasis has been given to finding the best possible approach to develop a simple and optimal solution for industrial users. This book includes several chapters that cover a broad range of topics and priority has been given to subjects that cover real-world examples and case studies. The book is focused on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-loop experiments.