Workshop held June 1988. Thirty-nine contributions treat the central mechanisms of thermoregulation, heat production, metabolic adaptations, respiration and circulation, physiology of hypometabolism, breeding and incubation, and adaptations to cold in chicks. Annotation copyright Book News, Inc. Portland, Or.
Workshop held June 1988. Thirty-nine contributions treat the central mechanisms of thermoregulation, heat production, metabolic adaptations, respiration and circulation, physiology of hypometabolism, breeding and incubation, and adaptations to cold in chicks. Annotation copyright Book News, Inc. Portland, Or.
When survival is challenged by the cold, animals react by employing both behavioral and physiological solutions. Depending on the magni tude of the cold stress and the nature of the adjustment, simple avoidance or sophisticated capacity or resistance compensations may be used. Thus, migration, shelter seeking, metabolic and insulative compen sation, torpor, and freezing avoidance and tolerance are successful tac tics used by diverse groups of animals. To understand and appreciate the benefits of these tactics, it is necessary to examine not only the well being of the whole animal but also their basic underlying mechanisms. In ad dition, it is also of fundamental importance to grasp how seasonal cold affects the survivorship and reproductive success of populations when confronted by a general reduction in primary productivity and an elevated energy cost for maintenance (e. g. in endotherms). In this regard, a synthetic overview which integrates aspects of cell biology, biochem istry, physiology, neurobiology, behavior, and population biology should be a fruitful approach in providing a holistic understanding on how animals adapt to cold. The present volume is an attempt to achieve such an overview; its objective is to provide a depth and breadth of coverage that is essential to a full appreciation of animal adaptation to cold. It is the hope of the contributing authors that this book will serve as an effective reference text for all senior undergraduate and graduate students as well as research scientists with an interest in cold physiology.
Hibernation and Torpor in Mammals and Birds explores the physiological factors that control hibernation and torpor in birds and mammals. This text covers topics ranging from metabolism in hibernation to the role of endocrines, respiration and acid-base state in hibernation, and theories of hibernation. This book is comprised of 14 chapters and begins with an overview of some clear-cut definitions and why mammals and birds hibernate. The reader is then introduced to the variations from euthermia that have been observed among birds and mammals. To give some structure to this listing, the approach is phylogenetic, starting with the birds and proceeding through the primitive to the more advanced mammals. Subsequent chapters explains the process of entering hibernation and the hibernating state, itself; capability of a species in natural hibernation to arouse from that state using self-generated heat; physiological changes at the start of a spontaneous arousal; and physiological mechanisms underlying the ability of hibernators to rewarm. Consideration is also given to intermediary metabolism in hibernation, cold adaptation of metabolism in hibernators, and the response of hibernators to various extrinsic influences such as neoplastic growth, radiation injury, and parasitism and symbionts. This book will be of interest to students and researchers in fields ranging from zoology to physiology and biophysics.
This book provides an in-depth overview on the functional ecology of daily torpor and hibernation in endothermic mammals and birds. The reader is well introduced to the physiology and thermal energetics of endothermy and underlying different types of torpor. Furthermore, evolution of endothermy as well as reproduction and survival strategies of heterothermic animals in a changing environment are discussed. Endothermic mammals and birds can use internal heat production fueled by ingested food to maintain a high body temperature. As food in the wild is not always available, many birds and mammals periodically abandon energetically costly homeothermic thermoregulation and enter an energy-conserving state of torpor, which is the topic of this book. Daily torpor and hibernation (multiday torpor) in these heterothermic endotherms are the most effective means for energy conservation available to endotherms and are characterized by pronounced temporal and controlled reductions in body temperature, energy expenditure, water loss, and other physiological functions. Hibernators express multiday torpor predominately throughout winter, which substantially enhances winter survival. In contrast, daily heterotherms use daily torpor lasting for several hours usually during the rest phase, some throughout the year. Although torpor is still widely considered to be a specific adaptation of a few cold-climate species, it is used by many animals from all climate zones, including the tropics, and is highly diverse with about 25-50% of all mammals, but fewer birds, estimated to use it. While energy conservation during adverse conditions is an important function of torpor, it is also employed to permit or facilitate energy-demanding processes such as reproduction and growth, especially when food supply is limited. Even migrating birds enter torpor to conserve energy for the next stage of migration, whereas bats may use it to deal with heat. Even though many heterothermic species will be challenged by anthropogenic influences such as habitat destruction, introduced species, novel pathogens and specifically global warming, not all are likely to be affected in the same way. In fact it appears that opportunistic heterotherms because of their highly flexible energy requirements, ability to limit foraging and reduce the risk of predation, and often pronounced longevity, may be better equipped to deal with anthropogenic challenges than homeotherms. In contrast strongly seasonal hibernators, especially those restricted to mountain tops, and those that have to deal with new diseases that are difficult to combat at low body temperatures, are likely to be adversely affected. This book addresses researchers and advanced students in Zoology, Ecology and Veterinary Sciences.
Membrane bioenergetics is one of the most rapidly growing areas within physico-chemical biology. Main aspects treated in this book include energy conservation and utilization by membrane-linked molecular mechanisms such as intracellular respiration, photosynthesis, transport phenomena, rotation of bacterial flagella, and the regulation of heat production.
The new and updated edition of this accessible text provides a comprehensive overview of the comparative physiology of animals within an environmental context. Includes two brand new chapters on Nerves and Muscles and the Endocrine System. Discusses both comparative systems physiology and environmental physiology. Analyses and integrates problems and adaptations for each kind of environment: marine, seashore and estuary, freshwater, terrestrial and parasitic. Examines mechanisms and responses beyond physiology. Applies an evolutionary perspective to the analysis of environmental adaptation. Provides modern molecular biology insights into the mechanistic basis of adaptation, and takes the level of analysis beyond the cell to the membrane, enzyme and gene. Incorporates more varied material from a wide range of animal types, with less of a focus purely on terrestrial reptiles, birds and mammals and rather more about the spectacularly successful strategies of invertebrates. A companion site for this book with artwork for downloading is available at: www.blackwellpublishing.com/willmer/
Human Physiology in Extreme Environments is the one publication that offers how human biology and physiology is affected by extreme environments while highlighting technological innovations that allow us to adapt and regulate environments. Covering a broad range of extreme environments, including high altitude, underwater, tropical climates, and desert and arctic climates as well as space travel, this book will include case studies for practical application. Graduate students, medical students and researchers will find Human Physiology in Extreme Environments an interesting, informative and useful resource for human physiology, environmental physiology and medical studies. - Presents human physiological challenges in Extreme Environments combined in one single resource - Provides an excellent source of information regarding paleontological and anthropological aspects - Offers practical medical and scientific use of current concepts
From 11 to 15 July 1977 about 60 physiologists, endo crinologists, ecologists and other biologists from 14 countries convened at the University Montpellier for a symposium on Environmental Endocrinology. This meet ing was organized as a Satellite Symposium of the 27th International Congress of Physiological Sciences, Paris, 18-23 July 1977. This volume is a record of the com munications presented at the symposium. The objectives of the program were to examine the role of the endocrine system in a wide spectrum of adjustments and adaptations to changes in environmental conditions by various spe cies of animals, including man, and to promote an ex change of ideas among investigators who have approached these functions from diverse aspects. The diversity of the information and ideas communicated is great. Of necessity, they represent only an extremely modest se lection of the many facets of endocrine function in the interaction of animals with their environments. Be yond the usefulness of the communications individually, we hope that they collectively demonstrate the substan tial heuristic value of the concept of environmental endocrinology as it was perceived by the participants. We acknowledge gratefully the kindness and sympathy of Professor Jaques ROUZAUD, President of the University of Montpellier II, for his generous extension of the hospitality of the University to the Symposium. We are most grateful to Mrs. Monique VIEU who effected so well the secretarial organization of the Sympos.