Analysis, Manifolds and Physics Revised Edition

Analysis, Manifolds and Physics Revised Edition

Author: Yvonne Choquet-Bruhat

Publisher: Gulf Professional Publishing

Published: 1982

Total Pages: 666

ISBN-13: 9780444860170

DOWNLOAD EBOOK

This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.


Tensors and Manifolds

Tensors and Manifolds

Author: Robert Wasserman

Publisher: Oxford University Press, USA

Published: 2004

Total Pages: 468

ISBN-13: 9780198510598

DOWNLOAD EBOOK

This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.


Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics

Author: Gerd Rudolph

Publisher: Springer Science & Business Media

Published: 2012-11-09

Total Pages: 766

ISBN-13: 9400753454

DOWNLOAD EBOOK

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.


Differentiable Manifolds

Differentiable Manifolds

Author: Gerardo F. Torres del Castillo

Publisher: Springer Nature

Published: 2020-06-23

Total Pages: 447

ISBN-13: 3030451933

DOWNLOAD EBOOK

This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.


Manifolds, Tensors and Forms

Manifolds, Tensors and Forms

Author: Paul Renteln

Publisher: Cambridge University Press

Published: 2014

Total Pages: 343

ISBN-13: 1107042194

DOWNLOAD EBOOK

Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.


Differential Equations on Manifolds and Mathematical Physics

Differential Equations on Manifolds and Mathematical Physics

Author: Vladimir M. Manuilov

Publisher: Birkhäuser

Published: 2022-01-22

Total Pages: 338

ISBN-13: 9783030373252

DOWNLOAD EBOOK

This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.


Geometric Mechanics on Riemannian Manifolds

Geometric Mechanics on Riemannian Manifolds

Author: Ovidiu Calin

Publisher: Springer Science & Business Media

Published: 2006-03-15

Total Pages: 285

ISBN-13: 0817644210

DOWNLOAD EBOOK

* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics


Calculus on Manifolds

Calculus on Manifolds

Author: Michael Spivak

Publisher: Westview Press

Published: 1965

Total Pages: 164

ISBN-13: 9780805390216

DOWNLOAD EBOOK

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.


Relativity on Curved Manifolds

Relativity on Curved Manifolds

Author: F. de Felice

Publisher: Cambridge University Press

Published: 1992-03-27

Total Pages: 466

ISBN-13: 9780521429085

DOWNLOAD EBOOK

This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurement on curved manifolds.