Physics of Ultra-Cold Matter

Physics of Ultra-Cold Matter

Author: J.T. Mendonça

Publisher: Springer Science & Business Media

Published: 2012-11-28

Total Pages: 411

ISBN-13: 1461454131

DOWNLOAD EBOOK

The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.


Ultracold Atomic Physics

Ultracold Atomic Physics

Author: Hui Zhai

Publisher: Cambridge University Press

Published: 2021-02-25

Total Pages: 311

ISBN-13: 110849868X

DOWNLOAD EBOOK

A modern introduction to ultracold atomic physics combining fundamental theory with discussion of cold atom phenomena and applications.


Atomic Physics: Precise Measurements and Ultracold Matter

Atomic Physics: Precise Measurements and Ultracold Matter

Author: Massimo Inguscio

Publisher: Oxford University Press, USA

Published: 2013-09-19

Total Pages: 349

ISBN-13: 0198525842

DOWNLOAD EBOOK

This book traces the evolution of Atomic Physics from precision spectroscopy to the manipulation of atoms at a billionth of a degree above absolute zero. Quantum worlds can be simulated and fundamental theories, such as General Relativity and Quantum Electrodynamics, can be tested with table-top experiments.


Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices

Author: Maciej Lewenstein

Publisher: OUP Oxford

Published: 2012-03-08

Total Pages: 494

ISBN-13: 0191627437

DOWNLOAD EBOOK

Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.


Many-Body Physics with Ultracold Gases

Many-Body Physics with Ultracold Gases

Author: Christophe Salomon

Publisher: Oxford University Press (UK)

Published: 2013

Total Pages: 374

ISBN-13: 019966188X

DOWNLOAD EBOOK

This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.


Ultracold Quantum Fields

Ultracold Quantum Fields

Author: Henk T. C. Stoof

Publisher: Springer Science & Business Media

Published: 2008-11-30

Total Pages: 485

ISBN-13: 1402087632

DOWNLOAD EBOOK

On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.


An Introduction to Cold and Ultracold Chemistry

An Introduction to Cold and Ultracold Chemistry

Author: Jesús Pérez Ríos

Publisher: Springer Nature

Published: 2020-11-05

Total Pages: 278

ISBN-13: 303055936X

DOWNLOAD EBOOK

This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.


Quantum Matter at Ultralow Temperatures

Quantum Matter at Ultralow Temperatures

Author: M. Inguscio

Publisher: IOS Press

Published: 2016-09-27

Total Pages: 590

ISBN-13: 1614996946

DOWNLOAD EBOOK

The Enrico Fermi summer school on Quantum Matter at Ultralow Temperatures held on 7-15 July 2014 at Varenna, Italy, featured important frontiers in the field of ultracold atoms. For the last 25 years, this field has undergone dramatic developments, which were chronicled by several Varenna summer schools, in 1991 on Laser Manipulation of Atoms, in 1998 on Bose-Einstein Condensation in Atomic Gases, and in 2006 on Ultra-cold Fermi Gases. The theme of the 2014 school demonstrates that the field has now branched out into many different directions, where the tools and precision of atomic physics are used to realise new quantum systems, or in other words, to quantum-engineer interesting Hamiltonians. The topics of the school identify major new directions: Quantum gases with long range interactions, either due to strong magnetic dipole forces, due to Rydberg excitations, or, for polar molecules, due to electric dipole interactions; quantum gases in lower dimensions; quantum gases with disorder; atoms in optical lattices, now with single-site optical resolution; systems with non-trivial topological properties, e.g. with spin-orbit coupling or in artificial gauge fields; quantum impurity problems (Bose and Fermi polarons); quantum magnetism. Fermi gases with strong interactions, spinor Bose-Einstein condensates and coupled multi-component Bose gases or Bose-Fermi mixtures continue to be active areas. The current status of several of these areas is systematically summarized in this volume.


The Physics of Ultracold Neutrons

The Physics of Ultracold Neutrons

Author: Vladimir Kazimirovich Ignatovich

Publisher:

Published: 1990

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

Slow-moving, low-energy ultracold neutrons provide an important tool for investigations in physics. They can be kept in hermetically sealed vessels for up to 15 minutes before they decay, allowing researchers sufficient time to observe the action of very weak fields and yielding valuable insights into neutron properties. In addition to describing how these particles are produced, detected, and analyzed, this book provides coverage of improvements in the techniques of ultracold neutron science--with information on how physicists may increase storage times--and explores ways they can be used for fundamental and applied research. Areas of study reported on include the determination of an upper limit to the electric dipole moment of neutrons, improved measurements of decay time, and new approaches to diffraction and diffusion theory. Although the text avoids mathematical detail, this is covered in appendices at chapter ends. The material is intended for specialists in neutron physics.