Physics of Turbulent Jet Ignition

Physics of Turbulent Jet Ignition

Author: Sayan Biswas

Publisher: Springer

Published: 2018-05-03

Total Pages: 230

ISBN-13: 3319762435

DOWNLOAD EBOOK

This book focuses on developing strategies for ultra-lean combustion of natural gas and hydrogen, and contributes to the research on extending the lean flammability limit of hydrogen and air using a hot supersonic jet. The author addresses experimental methods, data analysis techniques, and results throughout each chapter and: Explains the fundamental mechanisms behind turbulent hot jet ignition using non-dimensional analysis Explores ignition characteristics by impinging hot jet and multiple jets in relation to better controllability and lean combustion Explores how different instability modes interact with the acoustic modes of the combustion chamber. This book provides a potential answer to some of the issues that arise from lean engine operation, such as poor ignition, engine misfire, cycle-to-cycle variability, combustion instability, reduction in efficiency, and an increase in unburned hydrocarbon emissions. This thesis was submitted to and approved by Purdue University.


Turbulent Combustion

Turbulent Combustion

Author: Norbert Peters

Publisher: Cambridge University Press

Published: 2000-08-15

Total Pages: 322

ISBN-13: 1139428063

DOWNLOAD EBOOK

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.


Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines

Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines

Author: Akhilendra Pratap Singh

Publisher: Springer Nature

Published: 2021-05-15

Total Pages: 404

ISBN-13: 9811615136

DOWNLOAD EBOOK

This monograph covers different aspects related to utilization of alternative fuels in internal combustion (IC) engines with a focus on biodiesel, dimethyl ether, alcohols, biogas, etc. The focal point of this book is to present engine combustion, performance and emission characteristics of IC engines fueled by these alternative fuels. A section of this book also covers the potential strategies of utilization of these alternative fuels in an energy efficient manner to reduce the harmful pollutants emitted from IC engines. It presents the comparative analysis of different alternative fuels in a variety of engines to show the appropriate alternative fuel for specific types of engines. This book will prove useful for both researchers as well as energy experts and policy makers.


Unsteady Combustor Physics

Unsteady Combustor Physics

Author: Tim C. Lieuwen

Publisher: Cambridge University Press

Published: 2012-08-27

Total Pages: 427

ISBN-13: 1139576836

DOWNLOAD EBOOK

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.


Engines and Fuels for Future Transport

Engines and Fuels for Future Transport

Author: Gautam Kalghatgi

Publisher: Springer Nature

Published: 2021-12-13

Total Pages: 403

ISBN-13: 981168717X

DOWNLOAD EBOOK

This book focuses on clean transport and mobility essential to the modern world. It discusses internal combustion engines (ICEs) and alternatives like battery electric vehicles (BEVs) which are growing fast. Alternatives to ICEs start from a very low base and face formidable environmental, material availability, and economic challenges to unlimited and rapid growth. Hence ICEs will continue to be the main power source for transport for decades to come and have to be continuously improved to improve transport sustainability. The book highlights the need to assess proposed changes in the existing transport system on a life cycle basis. The volume includes chapters discussing the challenges faced by ICEs as well as chapters on novel fuels and fuel/ engine interactions which help in this quest to improve the efficiency of ICE and reduce exhaust pollutants. This book will be of interest to those in academia and industry alike.


Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Author: Heinz Pitsch

Publisher: Springer Nature

Published: 2020-05-28

Total Pages: 294

ISBN-13: 3030447189

DOWNLOAD EBOOK

This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.


Combustion and Mass Transfer

Combustion and Mass Transfer

Author: D Brian Spalding

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 419

ISBN-13: 1483136353

DOWNLOAD EBOOK

Combustion and Mass Transfer: A Textbook with Multiple-Choice Exercises for Engineering Students is a 20-chapter lecture text that covers various aspects of combustion and mass transfer. Each of the 20 chapters is provided with a set partly analytical and multiple-choice tutorial exercises, designed to assist the student to understand the material of the lectures. The opening chapters deal with the importance of combustion and mass transfer processes. The succeeding chapters survey the concepts and principles of droplet vaporization, droplet combustion, liquid-propellant rocket, and laminar and turbulent jet. These topics are followed by discussions of laminar and turbulent diffusion flame, kinetically-influenced phenomena, chemical kinetics, and spontaneous ignition. The remaining chapters consider the basic concepts of stirred reactor, flame stabilization, laminar flame propagation, spark ignition, and coal-particle combustion. This book is intended for undergraduate mechanical engineering students.


Combustion Physics

Combustion Physics

Author: Chung K. Law

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 5

ISBN-13: 1139459244

DOWNLOAD EBOOK

This graduate-level text incorporates these advances in a comprehensive treatment of the fundamental principles of combustion physics. The presentation emphasises analytical proficiency and physical insight, with the former achieved through complete, though abbreviated, derivations at different levels of rigor, and the latter through physical interpretations of analytical solutions, experimental observations, and computational simulations. Exercises are mostly derivative in nature in order to further strengthen the student's mastery of the theory. Implications of the fundamental knowledge gained herein on practical phenomena are discussed whenever appropriate. These distinguishing features provide a solid foundation for an academic program in combustion science and engineering.