Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices

Author: Milton Ohring

Publisher: Academic Press

Published: 2014-10-14

Total Pages: 759

ISBN-13: 0080575528

DOWNLOAD EBOOK

Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites


Failure Analysis

Failure Analysis

Author: Marius Bazu

Publisher: John Wiley & Sons

Published: 2011-03-08

Total Pages: 372

ISBN-13: 1119990009

DOWNLOAD EBOOK

Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.


Reliability Physics and Engineering

Reliability Physics and Engineering

Author: J. W. McPherson

Publisher: Springer Science & Business Media

Published: 2013-06-03

Total Pages: 406

ISBN-13: 3319001221

DOWNLOAD EBOOK

"Reliability Physics and Engineering" provides critically important information for designing and building reliable cost-effective products. The textbook contains numerous example problems with solutions. Included at the end of each chapter are exercise problems and answers. "Reliability Physics and Engineering" is a useful resource for students, engineers, and materials scientists.


Reliability Characterisation of Electrical and Electronic Systems

Reliability Characterisation of Electrical and Electronic Systems

Author: Jonathan Swingler

Publisher: Woodhead Publishing

Published: 2020-11-15

Total Pages: 350

ISBN-13: 9780081029633

DOWNLOAD EBOOK

The book charts how reliability engineering has moved from the use of sometimes arbitrary standards to an empirical scientific approach of understanding operating conditions, failure mechanisms, the need for testing for a more realistic characterisation and, new for the second edition, includes the monitoring of performance/robustness in the field. Reliability Characterisation of Electrical and Electronic Systems brings together a number of experts and key players in the discipline to concisely present the fundamentals and background to reliability theory, elaborate on the current thinking and developments behind reliability characterisation, and give a detailed account of emerging issues across a wide range of applications. The second edition has a new section titled Reliability Condition Monitoring and Prognostics for Specific Application which provides a guide to critical issues in key industrial sectors such as automotive and aerospace. There are also new chapters on areas of growing importance such as reliability methods in high-temperature electronics and reliability and testing of electric aircraft power systems. Reviews emerging areas of importance such as reliability methods in high-temperature electronics and reliability testing of electric vehicles Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing


Influence of Temperature on Microelectronics and System Reliability

Influence of Temperature on Microelectronics and System Reliability

Author: Pradeep Lall

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 332

ISBN-13: 0429605595

DOWNLOAD EBOOK

This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The


Probabilistic Physics of Failure Approach to Reliability

Probabilistic Physics of Failure Approach to Reliability

Author: Mohammad Modarres

Publisher: John Wiley & Sons

Published: 2017-06-23

Total Pages: 289

ISBN-13: 1119388686

DOWNLOAD EBOOK

The book presents highly technical approaches to the probabilistic physics of failure analysis and applications to accelerated life and degradation testing to reliability prediction and assessment. Beside reviewing a select set of important failure mechanisms, the book covers basic and advanced methods of performing accelerated life test and accelerated degradation tests and analyzing the test data. The book includes a large number of very useful examples to help readers understand complicated methods described. Finally, MATLAB, R and OpenBUGS computer scripts are provided and discussed to support complex computational probabilistic analyses introduced.


Failure Mechanisms in Semiconductor Devices

Failure Mechanisms in Semiconductor Devices

Author: E. Ajith Amerasekera

Publisher: John Wiley & Sons

Published: 1997-08-04

Total Pages: 368

ISBN-13:

DOWNLOAD EBOOK

Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.