The medical applications of physics are not typically covered in introductory physics courses. Introduction to Physics in Modern Medicine fills that gap by explaining the physical principles behind technologies such as surgical lasers or computed tomography (CT or CAT) scanners. Each chapter includes a short explanation of the scientific background, making this book highly accessible to those without an advanced knowledge of physics. It is intended for medicine and health studies students who need an elementary background in physics, but it also serves well as a non-mathematical introduction to applied physics for undergraduate students in physics, engineering, and other disciplines.
This textbook provides an accessible introduction to the basic principles of medical physics, the applications of medical physics equipment, and the role of a medical physicist in healthcare. Introduction to Medical Physics is designed to support undergraduate and graduate students taking their first modules on a medical physics course, or as a dedicated book for specific modules such as medical imaging and radiotherapy. It is ideally suited for new teaching schemes such as Modernising Scientific Careers and will be invaluable for all medical physics students worldwide. Key features: Written by an experienced and senior team of medical physicists from highly respected institutions The first book written specifically to introduce medical physics to undergraduate and graduate physics students Provides worked examples relevant to actual clinical situations
The connections between modern physics and medical technology Many remarkable medical technologies, diagnostic tools, and treatment methods have emerged as a result of modern physics discoveries in the last century—including X-rays, radiation treatment, laser surgery, high-resolution ultrasound scans, computerized tomography (CT) scans, and magnetic resonance imaging. This undergraduate-level textbook describes the fundamental physical principles underlying these technological advances, emphasizing their applications to the practice of modern medicine. Intended for science and engineering students with one year of introductory physics background, this textbook presents the medical applications of fundamental principles of physics to students who are considering careers in medical physics, biophysics, medicine, or nuclear engineering. It also serves as an excellent reference for advanced students, as well as medical and health researchers, practitioners, and technicians who are interested in developing the background required to understand the changing landscape of medical science. Practice exercises are included and solutions are available separately in an instructor's manual. Complete discussion of the fundamental physical principles underlying modern medicine Accessible exploration of the physics encountered in a typical visit to a doctor Practice exercises are included and solutions are provided in a separate instructor’s manual (available to professors) A companion website (modernphysicsinmedicine.com) presents supplementary materials
A textbook that covers Physical concepts at a basic level for manual therapists specifically . Clinicians in general and manual therapists in particular have a need tounderstand certain, specific aspects of physics to an advanced level.However, many lack prior education in this area, with chemistry and biology 'A' levels being emphasized in terms of entrance requirements. Most textbooks aimed at this field concentrate exclusively on the physics underpinning biomechanics, but the level at which these books are pitched is often too high to allow understanding by students who have an inadequate background in the subject. This book acts, in part, as a primer to address this deficit. Students are also required to understand the basic physics underpinning physiology, biochemistry, radiography and therapeutics. This textbook will be a guide to these specialist areas of knowledge. This text will cover biophysics as a core subject to guide the potential clinician from total ignorance to complete mastery in the areas of physics pertinent to manual medicine and its related disciplines. - Self assessment questions at the beginning of each chapter allow readers to check their existing knowledge prior to reading the chapter. - Each section builds from basic principles to advanced levels. - Clinical focus.
Physics has been applied to medical diagnosis for very nearly 400 years, and has now become an essential element of medical practice. This book concentrates on the theoretical basis of the physics which supports diagnostic techniques in modern clinical practice. Arising out of over a decade of teaching a course on medical physics to third year undergraduate students, the book has been structured so that individuals with a non-physics background, such as medical students or practitioners, can also benefit.
Contains over 3300 entries with accompanying diagrams, images, formulas, further reading, and examples Covers both the classical and newest elements in medical imaging, radiotherapy, and radiation protection Discusses material at a level accessible to graduate and postgraduate students in medical physics and related disciplines as well as medical specialists and researchers.
Essential Nuclear Medicine Physics provides an excellent introduction to the basic concepts of the daunting area of nuclear physics. Logically structured and clearly written, this is the book of choice for anyone entering the field of nuclear medicine, including nuclear medicine residents and fellows, cardiac nuclear medicine fellows and nuclear medicine technology students. The text is also a handy quick-reference guide for those already working in the field of nuclear physics. This new edition provides a basic introduction to nuclear physics and the interactions of radiation and matter. The authors also provide comprehensive coverage of instrumentation and imaging, with separate chapters devoted to SPECT, PET, and PET/CT. Discussion of radiation biology, radiation safety and care of victims of radiation accidents completes the text, with an appendix containing the latest NRC rules and regulations. Essential Nuclear Medicine Physics presents difficult concepts clearly and concisely, defines all terminology for the reader, and facilitates learning through extensive illustrations and self-assessment questions.
This third edition covers topics in physics as they apply to the life sciences, specifically medicine, physiology, nursing and other applied health fields. It includes many figures, examples and illustrative problems and appendices which provide convenient access to the most important concepts of mechanics, electricity, and optics.
This textbookcontains acomprehensive collection of exercises in medical physics with numerous illustrations – ideally suited for teaching and learning. Introductory sections summarize contents and learning targets of each chapter.
This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.