Fractal Concepts in Condensed Matter Physics

Fractal Concepts in Condensed Matter Physics

Author: Tsuneyoshi Nakayama

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 216

ISBN-13: 3662051931

DOWNLOAD EBOOK

Concisely and clearly written by two foremost scientists, this book provides a self-contained introduction to the basic concepts of fractals and demonstrates their use in a range of topics. The authors’ unified description of different dynamic problems makes the book extremely accessible.


Fractals in Science

Fractals in Science

Author: Armin Bunde

Publisher: Springer

Published: 2013-12-21

Total Pages: 317

ISBN-13: 3642779530

DOWNLOAD EBOOK

A deeply detailed discussion of fractals in biology, heterogeneous chemistry, polymers, and the earth sciences. Beginning with a general introduction to fractal geometry it continues with eight chapters on self-organized criticality, rough surfaces and interfaces, random walks, chemical reactions, and fractals in chemisty, biology, and medicine. A special chapter entitled "Computer Exploration of Fractals, Chaos, and Cooperativity" presents computer demonstrations of fractal models: 14 programs are included on a 3 1/2" MS-DOS diskette which run on any PC with at least 1 MB RAM and a EGA or VGA graphics card, 16 colors.


Discovery of Cosmic Fractals

Discovery of Cosmic Fractals

Author: Yurij Baryshev

Publisher: World Scientific

Published: 2002

Total Pages: 412

ISBN-13: 9789810248727

DOWNLOAD EBOOK

In a simple manner, explains the frontiers of astronomy, how fractals appear in cosmic physics, offers a personal view of the history of the idea of self-similarity and of cosmological principles and presents the debate which illustrates how new concepts and deeper observations reveal unexpected aspects of Nature.


Fractal Growth Phenomena

Fractal Growth Phenomena

Author: Tam s Vicsek

Publisher: World Scientific

Published: 1992

Total Pages: 542

ISBN-13: 9789810206680

DOWNLOAD EBOOK

The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes. This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.


Fractal Physiology

Fractal Physiology

Author: James B Bassingthwaighte

Publisher: Springer

Published: 2013-05-27

Total Pages: 371

ISBN-13: 1461475724

DOWNLOAD EBOOK

I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.


Renormalization Methods

Renormalization Methods

Author: Annick Lesne

Publisher: Wiley

Published: 1998-05-08

Total Pages: 0

ISBN-13: 9780471966890

DOWNLOAD EBOOK

Originally conceived some thirty years ago in the context ofquantum electrodynamics, renormalization methods have progressivelydeveloped into an indispensable analytical tool used in widelyvarying domains of physics and applied mathematics, such as * phase transitions and critical phenomena * dynamical systems and chaos * developed turbulence * fractal structures and complex systems * percolation * polymer physics * diffusion in disordered media * measure theory and stochastic processes. By explaining the fundamental principles of renormalization theorysuch as scale invariance and universality which lie behind all thetechnical variations, this book aims to guide the reader to a moreunified understanding of today s physics. The book is based on avery accessible main text, supplemented by several more specializedsections; it is intended for graduate students and for researcherswho are seeking an introduction to a new area of electrodynamics ora general overview of the physical phenomena to whichrenormalization methods are applied.