A multitude of processes that operate in the upper atmosphere are revealed by detailed physical and mathematical descriptions of the interactions of particles and radiation, temperatures, spectroscopy and dynamics.
Clouds affect our daily weather and play key roles in the global climate. Through their ability to precipitate, clouds provide virtually all of the fresh water on Earth and are a crucial link in the hydrologic cycle. With ever-increasing importance being placed on quantifiable predictions - from forecasting the local weather to anticipating climate change - we must understand how clouds operate in the real atmosphere, where interactions with natural and anthropogenic pollutants are common. This textbook provides students - whether seasoned or new to the atmospheric sciences - with a quantitative yet approachable path to learning the inner workings of clouds. Developed over many years of the authors' teaching at Pennsylvania State University, Physics and Chemistry of Clouds is an invaluable textbook for advanced students in atmospheric science, meteorology, environmental sciences/engineering and atmospheric chemistry. It is also a very useful reference text for researchers and professionals.
Physics and Chemistry of the Solar System is a broad survey of the Solar System. The book discusses the general properties and environment of our planetary system, including the astronomical perspective, the general description of the solar system and of the sun and the solar nebula). The text also describes the solar system beyond mars, including the major planets; pluto and the icy satellites of the outer planets; the comets and meteors; and the meteorites and asteroids. The inner solar system, including the airless rocky bodies; mars, venus, and earth; and planets and life about other stars, is also encompassed. Mathematicians, chemists, physicists, geologists, astronomers, meteorologists, and biologists will find the book useful.
Deep Earth: Physics and Chemistry of the Lower Mantle and Core highlights recent advances and the latest views of the deep Earth from theoretical, experimental, and observational approaches and offers insight into future research directions on the deep Earth. In recent years, we have just reached a stage where we can perform measurements at the conditions of the center part of the Earth using state-of-the-art techniques, and many reports on the physical and chemical properties of the deep Earth have come out very recently. Novel theoretical models have been complementary to this breakthrough. These new inputs enable us to compare directly with results of precise geophysical and geochemical observations. This volume highlights the recent significant advancements in our understanding of the deep Earth that have occurred as a result, including contributions from mineral/rock physics, geophysics, and geochemistry that relate to the topics of: I. Thermal structure of the lower mantle and core II. Structure, anisotropy, and plasticity of deep Earth materials III. Physical properties of the deep interior IV. Chemistry and phase relations in the lower mantle and core V. Volatiles in the deep Earth The volume will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are multidisciplinary, and therefore will be useful to students from a wide variety of fields in the Earth Sciences.
A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The main emphasis of the handbook is on rare earth elements [Sc, Y and the lanthanides (La through Lu)], but whenever relevant, information is also included on the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date, critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements, now publishing two volumes a year.
to arrive at some temporary consensus model or models; and to present reliable physical data pertaining to water under a range of conditions, i.e., "Dorsey revisited," albeit on a less ambitious scale. I should like to acknowledge a debt of gratitude to several of my col leagues, to Prof. D. J. G. Ives and Prof. Robert L. Kay for valuable guidance and active encouragement, to the contributors to this volume for their willing cooperation, and to my wife and daughters for the understanding shown to a husband and father who hid in his study for many an evening. My very special thanks go to Mrs. Joyce Johnson, who did all the cor respondence and much of the arduous editorial work with her usual cheerful efficiency. F. FRANKS Biophysics Division Unilever Research Laboratory ColworthjWelwyn Colworth House, Sharnbrook, Bedford March 1972 Contents Chapter 1 Introduction-Water, the Unique Chemical F. Franks I. lntroduction ........................................ . 2. The Occurrence and Distribution of Water on the Earth 2 3. Water and Life ...................................... 4 4. The Scientific Study of Water-A Short History ........ 8 5. The Place of Water among Liquids . . . . . . . . . . . . . . . 13 . . . . . Chapter 2 The Water Moleeule C. W. Kern and M. Karplus 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . . 2. Principles of Structure and Spectra: The Born-Oppenheimer Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . 3. The Electronic Motion ............................... 26 3.1. The Ground Electronic State of Water ............ 31 3.2. The Excited Electronic States of Water ........... 50 4. The Nuclear Motion ................................. 52 5. External-Field Effects ................................. 70 5.1. Perturbed Hartree-Fock Method . . . . . . . . . . . . . . . 74 . . .
This introduction to the principles of atmospheric physics and chemistry has been designed for physics or chemistry undergraduates with no prior knowledge of the subject. All aspects of the lower and middle atmospheres are treated as ultimate consequences
This book illustrates our understanding of the natural world via findings of studies in geochemistry, biochemistry, atmospheric chemistry, environmental chemistry, and other areas, in the context of the general chemistry of the elements. It is divided into two parts: the first provides an account of the Earth - its physics and chemistry, its structure and dynamics - emphasizing the varied roles played by the elements in combination with one another. It demonstrates how elemental chemical behavior dictates both their own environmental significance and the nature of our environment. The second part considers the elements in alphabetical order, and provides a comprehensive reference resource in its own right. Fully cross-referenced, this book is clear, precise, and will have wide appeal as either a supplementary text to an undergraduate inorganic and environmental chemistry course, as well as an essential resource for all those interested in the scientific study of the environment.