Physical Combinatorics

Physical Combinatorics

Author: Masaki Kashiwara

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 321

ISBN-13: 1461213789

DOWNLOAD EBOOK

Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics.


Combinatorial Physics

Combinatorial Physics

Author: Adrian Tanasa

Publisher: Oxford University Press

Published: 2021

Total Pages: 409

ISBN-13: 0192895494

DOWNLOAD EBOOK

The goal of the book is to use combinatorial techniques to solve fundamental physics problems, and vice-versa, to use theoretical physics techniques to solve combinatorial problems.


Combinatorics and Physics

Combinatorics and Physics

Author: Kurusch Ebrahimi-Fard

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 480

ISBN-13: 0821853295

DOWNLOAD EBOOK

This book is based on the mini-workshop Renormalization, held in December 2006, and the conference Combinatorics and Physics, held in March 2007. Both meetings took place at the Max-Planck-Institut fur Mathematik in Bonn, Germany. Research papers in the volume provide an overview of applications of combinatorics to various problems, such as applications to Hopf algebras, techniques to renormalization problems in quantum field theory, as well as combinatorial problems appearing in the context of the numerical integration of dynamical systems, in noncommutative geometry and in quantum gravity. In addition, it contains several introductory notes on renormalization Hopf algebras, Wilsonian renormalization and motives.


Asymptotic Combinatorics with Applications to Mathematical Physics

Asymptotic Combinatorics with Applications to Mathematical Physics

Author: Anatoly M. Vershik

Publisher: Springer

Published: 2003-07-03

Total Pages: 245

ISBN-13: 354044890X

DOWNLOAD EBOOK

At the Summer School Saint Petersburg 2001, the main lecture courses bore on recent progress in asymptotic representation theory: those written up for this volume deal with the theory of representations of infinite symmetric groups, and groups of infinite matrices over finite fields; Riemann-Hilbert problem techniques applied to the study of spectra of random matrices and asymptotics of Young diagrams with Plancherel measure; the corresponding central limit theorems; the combinatorics of modular curves and random trees with application to QFT; free probability and random matrices, and Hecke algebras.


Asymptotic Combinatorics with Application to Mathematical Physics

Asymptotic Combinatorics with Application to Mathematical Physics

Author: V.A. Malyshev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 335

ISBN-13: 9401005753

DOWNLOAD EBOOK

New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.


Combinatorial Physics

Combinatorial Physics

Author: Ted Bastin

Publisher: World Scientific

Published: 1995

Total Pages: 188

ISBN-13: 9812796142

DOWNLOAD EBOOK

The authors aim to reinstate a spirit of philosophical enquiry in physics. They abandon the intuitive continuum concepts and build up constructively a combinatorial mathematics of process. This radical change alone makes it possible to calculate the coupling constants of the fundamental fields which OCo via high energy scattering OCo are the bridge from the combinatorial world into dynamics. The untenable distinction between what is OCyobservedOCO, or measured, and what is not, upon which current quantum theory is based, is not needed. If we are to speak of mind, this has to be present OCo albeit in primitive form OCo at the most basic level, and not to be dragged in at one arbitrary point to avoid the difficulties about quantum observation. There is a growing literature on information-theoretic models for physics, but hitherto the two disciplines have gone in parallel. In this book they interact vitally."


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


$q$-Series with Applications to Combinatorics, Number Theory, and Physics

$q$-Series with Applications to Combinatorics, Number Theory, and Physics

Author: Bruce C. Berndt

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 290

ISBN-13: 0821827464

DOWNLOAD EBOOK

The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two Englishmathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions. In 1940, G. H. Hardy described what we now call Ramanujan's famous $ 1\psi 1$ summation theorem as ``a remarkable formula with many parameters.'' This is now one of the fundamental theorems of the subject. Despite humble beginnings,the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of thepapers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.


Computing and Combinatorics

Computing and Combinatorics

Author: Ding-Zhu Du

Publisher: Springer

Published: 2003-06-26

Total Pages: 490

ISBN-13: 354044968X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 6th Annual International Conference on Computing and Combinatorics, COCOON 2000, held in Sydney, Australia in July 2000.The 44 revised full papers presented together with two invited contributions were carefully reviewed and selected from a total of 81 submissions. The book offers topical sections on computational geometry; graph drawing; graph theory and algorithms; complexity, discrete mathematics, and number theory; online algorithms; parallel and distributed computing; combinatorial optimization; data structures and computational biology; learning and cryptography; and automata and quantum computing.