The Physical Basis of Electronics

The Physical Basis of Electronics

Author: D. J. Harris

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 279

ISBN-13: 1483156540

DOWNLOAD EBOOK

The Physical Basis of Electronics: An Introductory Course, Second Edition is an 11-chapter text that discusses the physical concepts of electronic devices. This edition deals with the considerable advances in electronic techniques, from the introduction of field effect transistors to the development of integrated circuits. The opening chapters discuss the fundamentals of vacuum electronics and solid-state electronics. The subsequent chapters deal with the other components of electronic devices and their functions, including semiconductor diode and transistor as an amplifier and a switch. The discussion then shifts to several types of field-effect transistor and the production of p-n junctions, transistors, and integrated circuits. A chapter highlights the four classifications of thermionic valves commonly used in electronic devices, namely, diodes, triodes, tetrodes, and pentodes. This chapter also considers the effect of small gas introduced to the characteristics of these valves. The concluding chapters discuss some of the basic modes of operation of electronic circuits and cathode-ray tube. This edition is of great value to undergraduate electronics students.


Semiconductor Physical Electronics

Semiconductor Physical Electronics

Author: Sheng S. Li

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 514

ISBN-13: 146130489X

DOWNLOAD EBOOK

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.


Electronics for Scientists

Electronics for Scientists

Author: A. De Sa

Publisher:

Published: 1997

Total Pages: 426

ISBN-13:

DOWNLOAD EBOOK

Electronics for Scientists provides comprehensive coverage of a vital part of modern science courses. This book will give students and experimentalists a thorough knowledge of the concepts involved and their applications to practical situations. The text is graded into three parts, and is illustrated with line diagrams, plots from circuit simulators and photographs from oscilloscope traces. Part One assumes very little prior knowledge of electronics and provides a foundation for the book. Recognising that in the fast-moving electronic instrumentation industry, most instruments have a market lifetime of only a few years, in Parts 2 and 3, descriptions of specific circuits are deliberately avoided. Instead the 'electronic building blocks' approach is adopted, so that any instrument, old or brand new, can be analysed on a functional basis. Electronics for Scientists will be essential reading for all undergraduate science students and experimentalists using commercially available electronic instruments or innovating their own instruments for specific applications.


Electronics

Electronics

Author: David Snoke

Publisher: Addison-Wesley

Published: 2014-09-30

Total Pages: 0

ISBN-13: 9780321551337

DOWNLOAD EBOOK

The Physical Foundations of Electronics For undergraduate physics courses, assuming some exposure to electrodynamics. Electronics: A Physical Approach de-mystifies electronics by filling the gap between physical principles and pragmatic circuit design. The authors introduce students to the physics behind the electronics, rather than presenting various tips on circuit building. As a result, students develop an intuition about how devices actually work by building a strong conceptual foundation.


Electronic Structure

Electronic Structure

Author: Richard M. Martin

Publisher: Cambridge University Press

Published: 2004-04-08

Total Pages: 658

ISBN-13: 9780521782852

DOWNLOAD EBOOK

An important graduate textbook in condensed matter physics by highly regarded physicist.


Physical Foundations of Quantum Electronics

Physical Foundations of Quantum Electronics

Author: David Nikolaevich Klyshko

Publisher: World Scientific

Published: 2011

Total Pages: 368

ISBN-13: 9814324507

DOWNLOAD EBOOK

A textbook that introduces a graduate student to the various fields of physics related to the interaction between radiation and matter. It emphasizes analogies and relations between seemingly different phenomena and different fields of quantum electronics.


Semiconductor Physics and Devices

Semiconductor Physics and Devices

Author: Donald A. Neamen

Publisher:

Published: 2003

Total Pages: 746

ISBN-13: 9780071198622

DOWNLOAD EBOOK

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.