Photonics and Laser Engineering: Principles, Devices, and Applications

Photonics and Laser Engineering: Principles, Devices, and Applications

Author: Alphan Sennaroglu

Publisher: McGraw-Hill Education

Published: 2010-06-11

Total Pages: 0

ISBN-13: 9780071606080

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. In-Depth Coverage of Photonics and Laser Engineering Written by an internationally acclaimed expert, this comprehensive volume provides the background in theoretical physics necessary to understand practical applications of lasers and optics. Photonics and Laser Engineering Principles, Devices, and Applications discusses theories of electromagnetism, geometrical optics, quantum mechanics, and laser physics and connects them to relevant implementations in areas such as fiber optics, optical detection, laser resonator design, and semiconductor lasers. Each chapter contains detailed equations, sample problems, and solutions to reinforce the concepts presented. Photonics and Laser Engineering covers: Electromagnetic wave theory of light with applications Geometrical optics Laser beams and resonators Classical and quantum theories of light-matter interactions Laser technology, including optical gain, oscillation, solid-state lasers, Q-switching, and laser mode locking Semiconductor lasers Anisotropic media and modulation of light Dielectric waveguides and optical fibers Nonlinear optics and the Raman effect


Photonic Crystals

Photonic Crystals

Author: Qihuang Gong

Publisher: CRC Press

Published: 2014-02-06

Total Pages: 368

ISBN-13: 9814267309

DOWNLOAD EBOOK

This book provides a broad overview of photonic crystals and, as the title suggests, covers their principles and applications. It is written from a physics point of view with an emphasis on materials science. Equations are well explained and often completely avoided to increase the readability of the book. The book is divided into eight chapters, starting with a brief introduction. The second chapter deals with different dimensionalities of the photonic crystals and their properties. The third chapter is very interestingly written and provides a survey of the various synthesis methods used for production of photonic crystals, including chemical routes, lithography, and self-assembly of colloidal photonic crystals. Chapters 4–8 constitute the bulk of the book and provide examples of applications of these photonic crystals. Chapter 4 offers a good explanation of optical switching. Bandgap and defect mode switching are also brought into focus along with many other mechanisms—14 different switching mechanisms in all, including thermal, electro, and magneto switching. Frequency tuning of photonic crystal filters with special attention to nanosize photonic crystals is illustrated, providing a direct perspective on applications of these materials in integrated photonic circuits. The transition from chapter 5 to 6 dealing with photonic crystal lasers is smooth, especially after a clear description of frequency tuning. Here, one- to three-dimensional photonic lasers are explained along with laser oscillations produced by a variety of microcavity methods. Metallodielectric and liquid-crystal photonic lasers are equally well illustrated. Chapter 7 introduces logic devices based on photonic crystals. This chapter clearly explains, with the help of simple illustrations, how to obtain AND, OR, and XOR logic gates. Chapter 8 concludes the book by presenting possible applications, including gas, chemical, fluid, and cell sensing; their workings are very well described from a fundamental point of view. The diagrams and illustrations are appropriate and eye catching. There are ample references; thus readers are able to find more detailed information to satisfy their curiosity if the book does not suffice. Even though the introduction provides basics of these photonic crystals, I do get the impression that the bigger picture is missing. A nonexpert may not understand the direct application of such materials right from the beginning of the book. A flowchart or a diagram of these photonic crystals, illustrating applications in daily life at the beginning of the book, could attract a broader readership. In this regard, I believe that this book is most adapted to physicists with a materials science background or vice versa. However, one should take into consideration that the principles of photonic crystals cannot be explained without physics, and therefore the quality of this book remains intact and could very well serve as a textbook for future physicists.


Lasers and Optoelectronics

Lasers and Optoelectronics

Author: Anil K. Maini

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 771

ISBN-13: 1118688961

DOWNLOAD EBOOK

With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diagnostics and therapeutics, scientific studies and Defence. simple explanation of the concepts and essential information on electronics and circuitry related to laser systems illustration of numerous solved and unsolved problems, practical examples, chapter summaries, self-evaluation exercises, and a comprehensive list of references for further reading This volume is a valuable design guide for R&D engineers and scientists engaged in design and development of lasers and optoelectronics systems, and technicians in their operation and maintenance. The tutorial approach serves as a useful reference for under-graduate and graduate students of lasers and optoelectronics, also PhD students in electronics, optoelectronics and physics.


Lasers and Electro-optics

Lasers and Electro-optics

Author: Christopher C. Davis

Publisher: Cambridge University Press

Published: 2014-03-20

Total Pages: 887

ISBN-13: 1107728975

DOWNLOAD EBOOK

Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.


Photonics

Photonics

Author: Abdul Al-Azzawi

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 1250

ISBN-13: 1351838172

DOWNLOAD EBOOK

Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. An explosion of new materials, devices, and applications makes it more important than ever to stay current with the latest advances. Surveying the field from fundamental concepts to state-of-the-art developments, Photonics: Principles and Practices builds a comprehensive understanding of the theoretical and practical aspects of photonics from the basics of light waves to fiber optics and lasers. Providing self-contained coverage and using a consistent approach, the author leads you step-by-step through each topic. Each skillfully crafted chapter first explores the theoretical concepts of each topic and then demonstrates how these principles apply to real-world applications by guiding you through experimental cases illuminated with numerous illustrations. Coverage is divided into six broad sections, systematically working through light, optics, waves and diffraction, optical fibers, fiber optics testing, and laboratory safety. A complete glossary, useful appendices, and a thorough list of references round out the presentation. The text also includes a 16-page insert containing 28 full-color illustrations. Containing several topics presented for the first time in book form, Photonics: Principles and Practices is simply the most modern, comprehensive, and hands-on text in the field.


Principles of Lasers and Optics

Principles of Lasers and Optics

Author: William S. C. Chang

Publisher: Cambridge University Press

Published: 2005-01-20

Total Pages: 261

ISBN-13: 1139441302

DOWNLOAD EBOOK

Principles of Lasers and Optics, first published in 2005, describes both the fundamental principles of the laser and the propagation and application of laser radiation in bulk and guided-wave components. All solid state, gas and semiconductor lasers are analysed uniformly as macroscopic devices with susceptibility originated from quantum mechanical interactions to develop an overall understanding of the coherent nature of laser radiation. Analyses of the unique properties of coherent laser light in bulk and guided-wave components are presented together and derived from fundamental principles, to allow students to appreciate the differences and similarities. Topics covered include discussions on how laser radiation should be analysed, the macroscopic differences and similarities of various analyses, special techniques, types of lasers and setting up laser analyses. This text will be useful for first-year graduates in electrical engineering and physics and also as a reference book on analytical techniques.


Photonics

Photonics

Author: Ralf Menzel

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 895

ISBN-13: 3662045214

DOWNLOAD EBOOK

Deals with the fundamental properties of photon and light beams, both experimentally and theoretically. It covers the essentials of linear interactions and most of the nonlinear interactions between light and matter in both the transparent and absorbing cases. About 4000 references open access to original literature.


Fundamentals of Laser Optoelectronics

Fundamentals of Laser Optoelectronics

Author: S. L. Chin

Publisher: World Scientific

Published: 1989

Total Pages: 376

ISBN-13: 9789810200732

DOWNLOAD EBOOK

This book is based on a course given by the author to third and fourth year undergraduate students from physics, engineering physics and electrical engineering. The purpose is to introduce and explain some of the fundamental principles underlying laser beam control in optoelectronics, especially those in relation to optical anisotropy which is at the heart of many optical devices. The contents of the book are scattered in many sources and there seems to be no single source available at the undergraduate level. That is why the present book is written. The book attempts to give the reader a good background needed for working in a laser, optoelectronic or photonic laboratory so that the use of equipment and the control of laser beams can be mastered without difficulty.


Applied Optics Fundamentals and Device Applications

Applied Optics Fundamentals and Device Applications

Author: Mark A. Mentzer

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 368

ISBN-13: 143982908X

DOWNLOAD EBOOK

How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology—and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems—including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.