Photon Correlation Techniques in Fluid Mechanics

Photon Correlation Techniques in Fluid Mechanics

Author: E.O. Schulz-Dubois

Publisher: Springer

Published: 2013-06-29

Total Pages: 410

ISBN-13: 3540394931

DOWNLOAD EBOOK

Photon correlation is a kind of spectroscopy designed to identify optical frequency shifts and line-broadening effects in the range of many MHz down to a few Hz. The optical intensity is measured in terms of single photon detection events which result in current pulses at the output of photomulti plier tubes. This signal is processed in real time in a special-purpose paral lel processor known as a correlator. The resulting photon correlation func tion, a function in the time domain, contains the desired spectral informa tion, which may be extracted by a suitable algorithm. Due to the non-intrusive nature and the sound theoretical basis of photon correlation, the phenomena under study are not disturbed, and the parameters in question can be precisely evaluated. For these reasons photon correlation has become a valuable and in many instances indispensable technique in two distinct fields. One of these is velocimetry in fluid flow. This includes hydro- and aerodynamic processes in liquids, gases, or flames where the velo city field may be stationary, time periodic, or turbulent, and may range from micrometers per second for motion inside biological cells to one kilometer per second for supersonic flow. The other major field is stochastic particle propagation due to Brownian motion.


Light Scattering Reviews 4

Light Scattering Reviews 4

Author: Alexander A. Kokhanovsky

Publisher: Springer Science & Business Media

Published: 2009-07-25

Total Pages: 516

ISBN-13: 354074276X

DOWNLOAD EBOOK

This fourth volume of Light Scattering Reviews is composed of three parts. The ?rstpartisconcernedwiththeoreticalandexperimentalstudiesofsinglelightsc- tering by small nonspherical particles. Light scattering by small particles such as, for instance, droplets in the terrestrial clouds is a well understood area of physical optics. On the other hand, exact theoretical calculations of light scattering p- terns for most of nonspherical and irregularly shaped particles can be performed only for the restricted values of the size parameter, which is proportional to the ratio of the characteristic size of the particle to the wavelength?. For the large nonspherical particles, approximations are used (e. g. , ray optics). The exact th- retical techniques such as the T-matrix method cannot be used for extremely large particles, such as those in ice clouds, because then the size parameter in the v- iblex=2?a/???,wherea is the characteristic size (radius for spheres), and the associated numerical codes become unstable and produce wrong answers. Yet another problem is due to the fact that particles in many turbid media (e. g. , dust clouds) cannot be characterized by a single shape. Often, refractive indices also vary. Because of problems with theoretical calculations, experimental (i. e. , la- ratory) investigations are important for the characterization and understanding of the optical properties of such types of particles. The ?rst paper in this volume, written by B. Gustafson, is aimed at the descr- tionofscaledanalogueexperimentsinelectromagneticscattering.


Laser Light Scattering

Laser Light Scattering

Author: Benjamin Chu

Publisher: Courier Corporation

Published: 2007-05-11

Total Pages: 370

ISBN-13: 0486457982

DOWNLOAD EBOOK

Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering. It focuses chiefly on quasielastic laser scattering, discussing theoretical concepts at a realistic level. Some background in the physical sciences is assumed, but the opening chapters offer a brief review of classical electricity and magnetism as well as the general scattering theory. Topics include basic theoretical concepts related to light mixing spectroscopy, characteristics of the Fabry-Perot interferometer, and photon-counting fluctuations. The author, a distinguished professor in the Department of Chemistry at Stony Brook University, discusses experimental methods, including setting up a light scattering spectrometer using digital photon-counting and correlation techniques. Subsequent chapters explore applications to macromolecular systems, anemometry and its utility in reaction kinetics, and critical opalescence. References appear throughout the text.


Molecular Liquids

Molecular Liquids

Author: A.J. Barnes

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 594

ISBN-13: 9400964633

DOWNLOAD EBOOK

This ASI was planned to make a major contribution to the teaching of the principles and methods used in liquid phase ~esearch and to encourage the setting up of collaborative projects, as advocated by the European Molecular Liquids Group (secretary: Dr J. Yarwood, University of Durham, U. K. ). During the past five years considerable progress has been made in studying molecular liquids. The undoubted advantages of international collaboration led to the formation of the European Molecular Liquids Group (EMLG) in July 1981. The activities of the EMLG were widely disseminated in a special session of the European Congress on Molecular Spectroscopy (EUCMOS) held in September 1981 (for details, see J. Mol. Structure, 80 (1982) 375 - 421). Following the success of this meeting, it was thought that the aims and objectives of the E~G would be best served by the organisation of a broader-based gathering designed to attract those interested in the study of the structure, dynamics and interactions in the liquid state. Thanks to the generous support by the Scientific Affairs Division of NATO, it was possible to hold a NATO ASI on Molecular Liquids at the Italian Centre of Stanford University, Florence, Italy during June-July 1983. This book is based on the lectures presented at that meeting. The contents of this volume cover the three broad areas of current liquid phase research: (a) Analytical theory.