Photoinitiated Polymerization discusses the latest developments in photoinitiated polymerization. This book includes the current state of free radical, cationic, and based catalyzed photopolymerization and their applications.
The main focus in this monograph is on models of the kinetics of photo-initiated polymerization of mono- and bi-functional monomers up to the high conversion stage, their derivation, analysis and comparison with the experimental data. This monograph can be useful for scientists, engineers, post-graduate training students and students who are interested in problems both of the polymerization kinetics and general chemical kinetics.
This state-of-the-art review explains the various aspects of a photopolymerization reaction, and the current and potential applications of photocuring: coatings, paints, adhesives, graphic arts, microelectronics, optics, medicine, stereolithography, laser writing, and more.
Polymers are substances containing a large number of structural units joined by the same type of linkage. These substances often form into a chain-like structure. Starch, cellulose, and rubber all possess polymeric properties. Today, the polymer industry has grown to be larger than the aluminium, copper and steel industries combined. Polymers already have a range of applications that far exceeds that of any other class of material available to man. Current applications extend from adhesives, coatings, foams, and packaging materials to textile and industrial fibres, elastomers, and structural plastics. Polymers are also used for most composites, electronic devices, biomedical devices, optical devices, and precursors for many newly developed high-tech ceramics. This new volume presents leading-edge research in this rapidly-changing and evolving field.
Volume three deals specifically with the role of monomers and resins in radiation curing. The nature of the backbone of ologomers leads to the ultimate physical or chemical properties of the UV-cured material. This chapter also covers aspects of the chemistry of these compounds in relation to their end uses.
The design and development of dyes and chromophores have recently attracted much attention in various research fields such as materials, radiation curing, (laser) imaging, optics, medicine, microelectronics, nanotechnology, etc.. In this book, the recent research for the use of dyes and chromophores in polymer science is presented. The interaction of the visible light with the dyes or the selected chromophores is particularly important in different fields (e.g. for photovoltaic, display applications (LED ...), laser imaging or laser direct writing, green chemistry with sunlight induced photopolymerization etc ...). This book gives an overview of the dyes and chromophores for all the important fields.
“Highly recommended!” – CHOICE New Edition Offers Improved Framework for Understanding Polymers Written by well-established professors in the field, Polymer Chemistry, Second Edition provides a well-rounded and articulate examination of polymer properties at the molecular level. It focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. Consistent with the previous edition, the authors emphasize the logical progression of concepts, rather than presenting just a catalog of facts. The book covers topics that appear prominently in current polymer science journals. It also provides mathematical tools as needed, and fully derived problems for advanced calculations. This new edition integrates new theories and experiments made possible by advances in instrumentation. It adds new chapters on controlled polymerization and chain conformations while expanding and updating material on topics such as catalysis and synthesis, viscoelasticity, rubber elasticity, glass transition, crystallization, solution properties, thermodynamics, and light scattering. Polymer Chemistry, Second Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, and chemical engineering.
A well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations. The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout. This revised edition: Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed Contains mathematical tools and step-by-step derivations for example problems Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals The number of homework problems has been greatly increased, to over 350 in all The worked examples and figures have been augmented More examples of relevant synthetic chemistry have been introduced into Chapter 2 ("Step-Growth Polymers") More details about atom-transfer radical polymerization and reversible addition/fragmentation chain-transfer polymerization have been added to Chapter 4 ("Controlled Polymerization") Chapter 7 (renamed "Thermodynamics of Polymer Mixtures") now features a separate section on thermodynamics of polymer blends Chapter 8 (still called "Light Scattering by Polymer Solutions") has been supplemented with an extensive introduction to small-angle neutron scattering Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.