Photodissociation Dynamics

Photodissociation Dynamics

Author: Reinhard Schinke

Publisher: Cambridge University Press

Published: 1995-05-11

Total Pages: 446

ISBN-13: 9780521484145

DOWNLOAD EBOOK

Photodissociation induced by the absorption of single photons permits the detailed study of molecular dynamics such as the breaking of bonds, internal energy transfer and radiationless transitions. The availability of powerful lasers operating over a wide frequency range has stimulated rapid development of new experimental techniques which make it possible to analyse photodissociation processes in unprecedented detail. This text elucidates the achievements in calculating photodissociation cross-sections and fragment state distributions from first principles, starting from multi-dimensional potential energy surfaces and the Schrödinger equation of nuclear motion. Following an extended introduction in which the various types of observables are outlined, the book summarises the basic theoretical tools, namely the time-independent and the time-dependent quantum mechanical approaches as well as the classical picture of photodissociation. The discussions of absorption spectra, diffuse vibrational structures, the vibrational and rotational state distributions of the photofragments form the core of the book. More specific topics such as the dissociation of vibrationally excited molecules, emission during dissociation, or nonadiabatic effects are also discussed. It will be of interest to graduate students and senior scientists working in molecular physics, spectroscopy, molecular collisions and molecular kinetics.


The Spectra and Dynamics of Diatomic Molecules

The Spectra and Dynamics of Diatomic Molecules

Author: Helene Lefebvre-Brion

Publisher: Elsevier

Published: 2004-04-28

Total Pages: 797

ISBN-13: 0080517501

DOWNLOAD EBOOK

This book is written for graduate students just beginning research, for theorists curious about what experimentalists actually can and do measure, and for experimentalists bewildered by theory. It is a guide for potential users of spectroscopic data, and uses language and concepts that bridge the frequency-and time-domain spectroscopic communities. Key topics, concepts, and techniques include: the assignment of simple spectra, basic experimental techniques, definition of Born-Oppenheimer and angular momentum basis sets and the associated spectroscopic energy level patterns (Hund's cases), construction of effective Hamiltonian matrices to represent both spectra and dynamics, terms neglected in the Born-Oppenheimer approximation (situations intermediate between Hund's cases, spectroscopic perturbations), nonlinear least squares fitting, calculation and interpretation of coupling terms, semi-classical (WKB) approximation, transition intensities and interference effects, direct photofragmentation (dissociation and ionization) and indirect photofragmentation (predissociation and autoionization) processes, visualization of intramolecular dynamics, quantum beats and wavepackets, treatment of decaying quasi-eigenstates using a complex Heff model, and concluding with some examples of polyatomic molecule dynamics. Students will discover that there is a fascinating world of cause-and-effect localized dynamics concealed beyond the reduction of spectra to archival molecular constants and the exact ab initio computation of molecular properties. Professional spectroscopists, kinetics, ab initio theorists will appreciate the practical, simplified-model, and rigorous theoretical approaches discussed in this book. - A fundamental reference for all spectra of small, gas-phase molecules - It is the most up-to-date and comprehensive book on the electronic spectroscopy and dynamics of diatomic molecules - The authors pioneered the development of many of the experimental methods, concepts, models, and computational schemes described in this book


Vibrationally Mediated Photodissociation

Vibrationally Mediated Photodissociation

Author: Salman Rosenwaks

Publisher: Royal Society of Chemistry

Published: 2009-05-05

Total Pages: 221

ISBN-13: 1847558178

DOWNLOAD EBOOK

Vibrationally Mediated Photodissociation (VMP) deals with the influence of vibrational excitation of the ground electronic state of a molecule on its dissociation following excitation of this state to a higher electronic state. Aimed at students and academics, this is the first book devoted to the effect of vibrational pre-excitation on molecular dynamics in the gas phase. In particular, it deals with the influence of this excitation on the dissociation of molecules (ie: on the branching ratio between the dissociation products and its dependence on the vibrational state being excited). The effect in the gas phase has been extensively studied, both theoretically and experimentally and encompasses diverse areas of chemical physics. This monograph presents the methodology of VMP, using state-of-the-art specific examples. Overviews of earlier works are included as well, to serve as a background for current research. Wherever appropriate, original works are quoted, including the original drawings. The contents include a brief review of theoretical and experimental methods relevant to VMP and specific examples. Also included are a bibliography, author and subject index. From the description of the motivation, the approach, the execution of the experiment and the analysis of the results of the specific examples, the reader will get a comprehensive understanding of the field. The book is aimed at senior undergraduate and graduate students of chemistry and physics. It serves as an introduction to VMP for beginners and as a literature guide to those acquainted with the subject but not necessarily working on VMP.


Molecular Photodissociation Dynamics

Molecular Photodissociation Dynamics

Author: M. N. R. Ashfold

Publisher: CRC Press

Published: 1987

Total Pages: 268

ISBN-13:

DOWNLOAD EBOOK

Molecular Photodissociation Dynamics was the first title to be published in this series and provides overviews of selected aspects of the subject. The experimental study of photodissociation has been revolutionized by the ready availability of intense, tunable laser sources, operational over a substantial portion of the electromagnetic spectrum, and with parallel developments in theoretical chemistry has opened the way to detailed theoretical study of the fragmentation dynamics of the excited state. This book will therefore be essential reading for those working in this area.