Existing photochemical theories of stratospheric ozone are surveyed. Recent modifications to Chapman's 1930 classical model have been focused on the search for additional sinks for stratospheric ozone, while relatively little attention has been given to the uncertainties in its production rate. A critical discussion is presented on the uncertainties involved in the photo-dissociation rate of molecular oxygen which is the determining factor in the ozone production rate. (Author).
Despite more than 20 years of regulatory efforts, concern is widespread that ozone pollution in the lower atmosphere, or troposphere, threatens the health of humans, animals, and vegetation. This book discusses how scientific information can be used to develop more effective regulations to control ozone. Rethinking the Ozone Problem in Urban and Regional Air Pollution discusses: The latest data and analysis on how tropospheric ozone is formed. How well our measurement techniques are functioning. Deficiencies in efforts to date to control the problem. Approaches to reducing ozone precursor emissions that hold the most promise. What additional research is needed. With a wealth of technical information, the book discusses atmospheric chemistry, the role of oxides of nitrogen (NOx) and volatile organic compounds (VOCs) in ozone formation, monitoring and modeling the formation and transport processes, and the potential contribution of alternative fuels to solving the tropospheric ozone problem. The committee discusses criteria for designing more effective ozone control efforts. Because of its direct bearing on decisions to be made under the Clean Air Act, this book should be of great interest to environmental advocates, industry, and the regulatory community as well as scientists, faculty, and students.
Factors Affecting the Formation of Ozone; Transport of Ozone and Its Implications for New England; Ambient Levels of Ozone in New England and Interpretation of Trends; Effects of Ozone on Crops in New England; Effects of Ozone on Forests in the Northeastern United States; Effects of Ozone on Tires and the Control of These Effects; Assessment of Ozone Toxicity with Animal Models; The Respiratory Effects of Low Level Ozone Exposure, Clinical Studies; Extrapulmonary Effects of Ozone; Epidemiologic Assessment of Short Term Ozone Health Effects; Basis for the Primary Ozone Standard; EPA's Implementation Strategy for Ozone Reductions.
In recent years, several new concepts have emerged in the field of stratospheric ozone depletion, creating a need for a concise in-depth publication covering the ozone-climate issue. This monograph fills that void in the literature and gives detailed treatment of recent advances in the field of stratospheric ozone depletion. It puts particular emphasis on the coupling between changes in the ozone layer and atmospheric change caused by a changing climate. The book, written by leading experts in the field, brings the reader the most recent research in this area and fills the gap between advanced textbooks and assessments.
Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
The Committee on Ozone-Forming Potential for Reformulated Gasoline was asked whether the existing body of scientific and technical information is sufficient to permit a robust evaluation and comparison of the emissions from motor vehicles using different reformulated gasolines based on their ozone-forming potentials and to assess the concomitant impact of that approach on air-quality benefits of the use of oxygenates within the RFG program. As part of its charge, the committee was asked to consider (1) the technical soundness of various approaches for evaluating and comparing the relative ozone-forming potentials of RFG blends, (2) technical aspects of various air-quality issues related to RFG assessment, and (3) the sensitivity of evaluations of the relative ozone-forming potentials to factors related to fuel properties and the variability of vehicle technologies and driving patterns.