Photoacoustic and Thermoacoustic Tomography

Photoacoustic and Thermoacoustic Tomography

Author: Geng Ku

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Photoacoustic tomography (PAT), as well as thermoacoustic tomography (TAT), utilize electromagnetic radiation in its visible, near infrared, microwave, and radiofrequency forms, respectively, to induce acoustic waves in biological tissues for imaging purposes. Combining the advantages of both the high image contrast that results from electromagnetic absorption and the high resolution of ultrasound imaging, these new imaging modalities could be the next successful imaging techniques in biomedical applications. Basic research on PAT and TAT, and the relevant physics, is presented in Chapter I. In Chapter II, we investigate the imaging mechanisms of TAT in terms of signal generation, propagation and detection. We present a theoretical analysis as well as simulations of such imaging characteristics as contrast and resolution, accompanied by experimental results from phantom and tissue samples. In Chapter III, we discuss the further application of TAT to the imaging of biological tissues. The microwave absorption difference in normal and cancerous breast tissues, as well as its influence on thermoacoustic wave generation and the resulting transducer response, is investigated over a wide range of electromagnetic frequencies and depths of tumor locations. In Chapter IV, we describe the mechanism of PAT and the algorithm used for image reconstruction. Because of the broad bandwidth of the laser-induced ultrasonic waves and the limited bandwidth of the single transducer, multiple ultrasonic transducers, each with a different central frequency, are employed for simultaneous detection. Chapter V further demonstrates PAT's ability to image vascular structures in biological tissue based on blood's strong light absorption capability. The photoacoustic images of rat brain tumors in this study clearly reveal the angiogenesis that is associated with tumors. In ChapterVI, we report on further developing PAT to image deeply embedded optical heterogeneity in biological tissues. The improved imaging ability is attributed to better penetration by NIR light, the use of the optical contrast agent ICG (indocyanine green) and a new detection scheme of a circular scanning configuration. Deep penetrating PAT, which is based on a tissue's intrinsic contrast using laser light of 532um [mu] green light and1.06 um [mu] near infrared light, is also presented.


Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.


Photoacoustic Imaging and Spectroscopy

Photoacoustic Imaging and Spectroscopy

Author: Lihong V. Wang

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 518

ISBN-13: 1420059920

DOWNLOAD EBOOK

Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applications that are changing diagnostic medicine. Bringing together the leading pioneers in this field to write about their own work, Photoacoustic Imaging and Spectroscopy is the first to provide a full account of the latest research and developing applications in the area of biomedical photoacoustics. Photoacoustics can provide functional sensing of physiological parameters such as the oxygen saturation of hemoglobin. It can also provide high-contrast functional imaging of angiogenesis and hypermetabolism in tumors in vivo. Discussing these remarkable noninvasive applications and so much more, this reference is essential reading for all researchers in medical imaging and those clinicians working at the cutting-edge of modern biotechnology to develop diagnostic techniques that can save many lives and just as importantly do no harm.


Mathematical Modeling in Biomedical Imaging II

Mathematical Modeling in Biomedical Imaging II

Author: Habib Ammari

Publisher: Springer

Published: 2011-09-15

Total Pages: 170

ISBN-13: 3642229905

DOWNLOAD EBOOK

This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools. It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.


Photoacoustic Tomography (PAT)

Photoacoustic Tomography (PAT)

Author: Xueding Wang

Publisher: MDPI

Published: 2021-02-17

Total Pages: 152

ISBN-13: 3039436430

DOWNLOAD EBOOK

Photoacoustic (or optoacoustic) imaging, including photoacoustic tomography (PAT) and photoacoustic microscopy (PAM), is an emerging imaging modality with great clinical potential. PAI’s deep tissue penetration and fine spatial resolution also hold great promise for visualizing physiology and pathology at the molecular level. PAI combines optical contrast with ultrasonic resolution, and is capable of imaging at depths of up to 7 cm with a real-time scalable spatial resolution of 10 to 500 µm. PAI has demonstrated applications in brain imaging and cancer imaging, such as breast cancer, prostate cancer, ovarian cancer etc. This Special Issue focuses on the novel technological developments and pre-clinical and clinical biomedical applications of PAI. Topics include but are not limited to: brain imaging; cancer imaging; image reconstruction; quantitative imaging; light source and delivery for PAI; photoacoustic detectors; nanoparticles designed for PAI; photoacoustic molecular imaging; photoacoustic spectroscopy.


Photoacoustic Tomography

Photoacoustic Tomography

Author: Huabei Jiang

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 304

ISBN-13: 1482261049

DOWNLOAD EBOOK

The concept of photoacoustic tomography (PAT) emerged in the mid-1990s, and the field of PAT is now rapidly moving forward. Presenting the research of a well-respected pioneer and leading expert, Photoacoustic Tomography is a first-of-its-kind book covering the underlying principles and practical applications of PAT in a systematic manner. Written in a tutorial format, the text: Addresses the fundamentals of PAT, the theory on photoacoustic effect, image reconstruction methods, and instrumentation Details advanced methods for quantitative PAT, which allow the recovery of tissue optical absorption coefficient and/or acoustic properties Explores the development of several image-enhancing schemes, including both software and hardware approaches Examines array-based PAT systems that are the foundation for the realization of 2-D, 3-D, and 4-D PAT Discusses photoacoustic microscopy (PAM) and combinations of PAT/PAM with other imaging methods Considers contrast-agents-based molecular PAT, with both nontargeted and cell receptor–targeted methods Describes clinical applications and animal studies in breast cancer detection, osteoarthritis diagnosis, seizure localization, intravascular imaging, and image-guided cancer therapy Photoacoustic Tomography is an essential reference for graduate students, researchers, industry professionals, and those who wish to enter this exciting field.


Biomedical Optics

Biomedical Optics

Author: Lihong V. Wang

Publisher: John Wiley & Sons

Published: 2012-09-26

Total Pages: 378

ISBN-13: 0470177004

DOWNLOAD EBOOK

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues are covered. The imaging modalities include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique are emphasized. A solutions manual is available for instructors; to obtain a copy please email the editorial department at [email protected].


Image Reconstruction in Photoacoustic Computed Tomography with Acoustically Heterogeneous Media

Image Reconstruction in Photoacoustic Computed Tomography with Acoustically Heterogeneous Media

Author: Chao Huang

Publisher:

Published: 2014

Total Pages: 121

ISBN-13:

DOWNLOAD EBOOK

Photoacoustic computed tomography (PACT), also known as optoacoustic or thermoacoustic tomography, is a rapidly emerging hybrid imaging modality that combines optical image contrast with ultrasound detection. The majority of currently available PACT image reconstruction algorithms are based on idealized imaging models that assume a lossless and acoustically homogeneous medium. However, in many applications of PACT these assumptions are violated and the induced photoacoustic (PA) wavefields are scattered and absorbed as they propagate to the receiving transducers. In those applications of PACT, the reconstructed images can contain significant distortions and artifacts if the inhomogeneous acoustic properties of the object are not accounted for in the reconstruction algorithm. In this dissertation, we develop and investigate a full-wave approach to iterative image reconstruction in PACT with acoustically heterogeneous lossy media. A key contribution of this work is the establishment of a discrete imaging model that is based on the exact PA wave equation and a procedure to implement an associated matched discrete forward and backprojection operator pair, which permits application of a variety of modern iterative image reconstruction algorithms that can mitigate the effects of noise, data incompleteness and model errors. Another key contribution is the development of an optimization approach to joint reconstruction (JR) of absorbed optical energy density and speed of sound in PACT, which is utilized to investigate the numerical properties of the JR problem and its feasibility in practice. We also develop a TR-based methodology to compensate for heterogeneous acoustic attenuation that obeys a frequency power law. In addition, we propose a image reconstruction methodology for transcranial PACT that employs detailed subject-specific descriptions of the acoustic properties of the skull to mitigate skull-induced distortions in the reconstructed image.