Although semiconductor-diode lasers are the most compact, highest gain and most efficient laser sources, difficulties remain in developing structures that will produce high-quality, diffraction-limited output beams. Indeed, only a few designs have emerged with the potential for producing high-power, high-brightness monolithic sources. This book presents and analyzes the results of work performed over the past two decades in the development of such diode-laser arrays.
A complete review of the state of the art of phase conjugate lasers, including laser demonstrations, performances, technology and selection of the most important class of nonlinear media. * Emphasizes the basic aspects of phase conjugation. * Chapter authors have all made major contributions to their subjects.
Reviews all the basic types of surface emitting semiconductor lasers, including vertical cavity, etched-mirror integrated beam deflectors and grating out-coupled devices. The book also addresses such topics as edge-emitting arrays, thermal management and coherence.
The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers. Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.
The Handbook includes chapters on all the major industry standards, quick reference tables, helpful appendices, plus a new glossary and list of acronyms. This practical handbook can stand alone or as a companion volume to DeCusatis: Fiber Optic Data Communication: Technological Advances and Trends (February 2002, ISBN: 0-12-207892-6), which was developed in tandem with this book.* Includes emerging technologies such as Infiniband, 10 Gigabit Ethernet, and MPLS Optical Switching* Describes leading edge commercial products, including LEAF and MetroCore fibers, dense wavelength multiplexing, and Small Form Factor transceiver packages* Covers all major industry standards, often written by the same people who designed the standards themselves* Includes an expanded listing of references on the World Wide Web, plus hard-to-find references for international, homologation, and type approval requirements* Convenient tables of key optical datacom parameters and glossary with hundreds of definitions and acronyms* Industry buzzwords explained, including SAN, NAS, and MAN networking* Datacom market analysis and future projections from industry leading forecasters
The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.