Phase Equilibrium Engineering

Phase Equilibrium Engineering

Author: Esteban Alberto Brignole

Publisher: Newnes

Published: 2013-04-02

Total Pages: 347

ISBN-13: 044459471X

DOWNLOAD EBOOK

Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the thermodynamic model and the process technology that could be applied are discussed. A classification of mixtures, separation process, thermodynamic models and technologies is presented to guide the engineer in the world of separation processes. The phase condition required for a given reacting system is studied at subcritical and supercritical conditions. The four cardinal points of phase equilibrium engineering are: the chemical plant or process, the laboratory, the modeling of phase equilibria and the simulator. The harmonization of all these components to obtain a better design or operation is the ultimate goal of phase equilibrium engineering. - Methodologies are discussed using relevant industrial examples - The molecular nature and composition of the process mixture is given a key role in process decisions - Phase equilibrium diagrams are used as a drawing board for process implementation


Phase Equilibrium Engineering

Phase Equilibrium Engineering

Author: Esteban Brignole

Publisher: Elsevier Inc. Chapters

Published: 2013-04-02

Total Pages: 42

ISBN-13: 0128082607

DOWNLOAD EBOOK

In this chapter, the basic methodologies of phase equilibrium engineering are introduced through the systematic analysis of several case studies. Some of the thermodynamic tools that have been presented in the previous chapters are applied to illustrate how the phase and conceptual process design of complex engineering problems can be tackled from a phase equilibrium engineering approach. In all the case studies, the first step is to consider in great detail the properties of the process feed, the components, their physical properties, concentrations, and molecular interactions. This information is then used for the selection of thermodynamic models, a suitable technology, pressure, temperature, and compositional operating boundaries. It is shown how the mixture composition and the process goals and specifications determine the process scheme and the unit thermodynamic sensitivity. In addition, the importance of the mixture composition is highlighted in combination with the energy and material balance in the case study for the selection of the desirable natural gas cryogenic technologies. The use of a pressure versus temperature drawing board is used to plot the process trajectory and the mixture phase envelopes from the initial conditions to the key phase engineering design problem. Moreover, the phase design provides also a sound basis for the process initial specification and computer simulation. As another example of phase equilibrium engineering, the heat integration in a complex process is solved by the application of the Gibbs phase rule to the LLV equilibria of a ternary mixture.


Phase Equilibria in Chemical Engineering

Phase Equilibria in Chemical Engineering

Author: Stanley M. Walas

Publisher: Butterworth-Heinemann

Published: 2013-10-22

Total Pages: 689

ISBN-13: 1483145085

DOWNLOAD EBOOK

Phase Equilibria in Chemical Engineering is devoted to the thermodynamic basis and practical aspects of the calculation of equilibrium conditions of multiple phases that are pertinent to chemical engineering processes. Efforts have been made throughout the book to provide guidance to adequate theory and practice. The book begins with a long chapter on equations of state, since it is intimately bound up with the development of thermodynamics. Following material on basic thermodynamics and nonidealities in terms of fugacities and activities, individual chapters are devoted to equilibria primarily between pairs of phases. A few topics that do not fit into these categories and for which the state of the art is not yet developed quantitatively have been relegated to a separate chapter. The chapter on chemical equilibria is pertinent since many processes involve simultaneous chemical and phase equilibria. Also included are chapters on the evaluation of enthalpy and entropy changes of nonideal substances and mixtures, and on experimental methods. This book is intended as a reference and self-study as well as a textbook either for full courses in phase equilibria or as a supplement to related courses in the chemical engineering curriculum. Practicing engineers concerned with separation technology and process design also may find the book useful.


Phase Equilibrium Engineering

Phase Equilibrium Engineering

Author: Esteban Brignole

Publisher: Elsevier Inc. Chapters

Published: 2013-04-02

Total Pages: 41

ISBN-13: 0128082666

DOWNLOAD EBOOK

The application of the principles of phase equilibrium engineering to the development of two innovative technologies for the production of biofuels is discussed in this chapter. The first technology is the production of biodiesel by transesterification of vegetable oils with supercritical methanol; the second, the extraction and dehydration of alcohols by near-critical dual effect solvents that exhibit good solvent power to extract alcohols and water entrainment effect to dehydrate the extracted alcohol. In the first case, the complexity of the reacting system, the large size asymmetry, and strong molecular interactions of the mixture components: methanol, vegetable oils, fatty esters, and glycerin precluded the design and analysis of the process conditions based on thermodynamic model predictions. Therefore, in this case, a systematic approach based on experimental studies was used to unveil the phase scenario and the physical properties required for the design and optimization of this technology. The conceptual design of extraction and dehydration of alcohols by near-critical solvents followed a different path. The process development was initially based on very limited experimental information. In this case, an equation of state for highly nonideal systems was the main tool for exploration of the process conditions over a wide range of pressures, temperatures, and compositions. This equation of state was based on a group contribution approach (GC-EOS) that allowed extrapolating the scarce experimental information available not only in pressure, temperature, and composition but also in molecular structure. The basic conceptual design was later confirmed by experimental information and pilot plant studies. In this case, the design of the experimental studies was guided by the process conceptual design. The experimental results provided key information for the upgrading of the thermodynamic model.


Phase Equilibria, Phase Diagrams and Phase Transformations

Phase Equilibria, Phase Diagrams and Phase Transformations

Author: Mats Hillert

Publisher: Cambridge University Press

Published: 2007-11-22

Total Pages: 525

ISBN-13: 1139465864

DOWNLOAD EBOOK

Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.


Phase Equilibrium Engineering

Phase Equilibrium Engineering

Author: Martín Cismondi

Publisher: Elsevier Inc. Chapters

Published: 2013-04-02

Total Pages: 52

ISBN-13: 0128082593

DOWNLOAD EBOOK

This chapter illustrates the wide variety of binary fluid phase equilibrium diagrams that can be obtained using models based on equations of state (EOS). It also highlights the need for paying attention to the predicted binary key lines, such as the critical and the liquid–liquid–vapor equilibrium lines, when fitting binary interaction parameters of an EOS model. In addition, efficient algorithms for the EOS-based automated computation of complete Univariant Lines Phase Equilibrium Diagrams and of complete restricted binary phase equilibrium diagrams, such as isoplethic, isothermal, or isobaric diagrams, are described.


Phase Diagrams and Heterogeneous Equilibria

Phase Diagrams and Heterogeneous Equilibria

Author: Bruno Predel

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 357

ISBN-13: 366209276X

DOWNLOAD EBOOK

This advanced comprehensive textbook introduces the practical application of phase diagrams to the thermodynamics of materials consisting of several phases. It describes the fundamental physics and thermodynamics as well as experimental methods, treating all material classes: metals, glasses, ceramics, polymers, organic materials, aqueous solutions. With many application examples and realistic cases from chemistry and materials science, it is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Also concisely presented are the thermodynamics and composition of polymer systems. This innovative text puts this powerful analytical approach into a readily understandable and practical context, perhaps for the first time.


Phase Diagrams and Thermodynamic Modeling of Solutions

Phase Diagrams and Thermodynamic Modeling of Solutions

Author: Arthur D. Pelton

Publisher: Academic Press

Published: 2018-09-19

Total Pages: 404

ISBN-13: 0128016698

DOWNLOAD EBOOK

Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. - Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical thermodynamics - Provides an in-depth understanding of phase equilibria - Includes information that can be used as a text for graduate courses on thermodynamics and phase diagrams, or on solution modeling - Covers several types of phase diagrams (paraequilibrium, solidus projections, first-melting projections, Scheil diagrams, enthalpy diagrams), and more


Fluid Mechanics for Chemical Engineers

Fluid Mechanics for Chemical Engineers

Author: Noel De Nevers

Publisher: McGraw-Hill Europe

Published: 2005

Total Pages: 632

ISBN-13: 9780071238243

DOWNLOAD EBOOK

Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics.


Introduction To Phase Diagrams In Materials Science And Engineering

Introduction To Phase Diagrams In Materials Science And Engineering

Author: Hiroyasu Saka

Publisher: World Scientific

Published: 2020-01-08

Total Pages: 188

ISBN-13: 9811203725

DOWNLOAD EBOOK

'… the author uses color drawings in two-dimensions (2D) and three-dimensions (3D) to help the reader better understand what is happening in the phase diagram. Examples of ternary compounds include important alloys such as stainless steels (Fe-Cr-Ni). These illustrations greatly help one to visualize important points described in each diagram and clarifies difficult processes by also including a step-by-step description of key points through the graph … For material scientists and engineers who need to understand phase diagrams, this book can provide you with that basic knowledge that will make you an expert at reading these sometimes very complicated graphs.'IEEE Electrical Insulation MagazinePhase diagrams are a MUST for materials scientists and engineers (MSEs). However, understanding phase diagrams is a difficult task for most MSEs. The audience of this book are young MSEs who start learning phase diagrams and are supposed to become specialists and those who were trained in fields other than materials science and engineering but are involved in research and/or development of materials after they are employed.Ternary phase diagrams presented in Chapter 4 are far more complex than binary phase diagrams. For this reason, ternary phase diagrams are nowadays less and less taught. However, in ceramics and semiconductors ternary phase diagrams become more and more important. Recent software provides necessary information to handle ternary phase diagrams. However, needless to say, without fundamental knowledge of ternary phase diagrams it is impossible to understand ternary phase diagrams correctly. In this book ternary phase diagrams are presented in a completely original way, with many diagrams illustrated in full color.In this book the essence of phase diagrams is presented in a user-friendly manner. This book is expected to be a Bible for MSEs.