Pharmaceutical Drug Delivery Systems and Vehicles focuses on the fundamental principles while touching upon the advances in the pharma field with coverage of the basic concepts, fundamental principles, biomedical rationales, preparative and characterization techniques, and potential applications of pharmaceutical drug delivery systems and vehicles.
Following its successful predecessor, this book covers the fundamentals, delivery routes and vehicles, and practical applications of drug delivery. In the 2nd edition, almost all chapters from the previous are retained and updated and several new chapters added to make a more complete resource and reference. • Helps readers understand progress in drug delivery research and applications • Updates and expands coverage to reflect advances in materials for delivery vehicles, drug delivery approaches, and therapeutics • Covers recent developments including transdermal and mucosal delivery, lymphatic system delivery, theranostics • Adds new chapters on nanoparticles, controlled drug release systems, theranostics, protein and peptide drugs, and biologics delivery
In this concise and systematic book, a team of experts select the most important, cutting-edge technologies used in drug delivery systems. They take into account significant drugs, new technologies such as nanoparticles, and therapeutic applications. The chapters present step-by-step laboratory protocols following the highly successful Methods in Molecular BiologyTM series format, offering readily reproducible results vital for pharmaceutical physicians and scientists.
Pharmaceutical Drug Delivery Systems and Vehicles focuses on the fundamental principles while touching upon the advances in the pharma field with coverage of the basic concepts, fundamental principles, biomedical rationales, preparative and characterization techniques, and potential applications of pharmaceutical drug delivery systems and vehicles.
This book is part of a series dedicated to recent advances on preventive, predictive and personalised medicine (PPPM). It focuses on the theme of “Drug delivery systems: advanced technologies potentially applicable in personalised treatments”. The critical topics involving the development and preparation of effective drug delivery systems, such as: polymers available, self-assembly, nanotechnology, pharmaceutical formulations, three dimensional structures, molecular modeling, tailor-made solutions and technological tendencies, are carefully discussed. The understanding of these areas constitutes a paramount route to establish personalised and effective solutions for specific diseases and individuals.
Since the earliest dosage forms to modern drug delivery systems, came a great development and growth of knowledge with respect to drug delivery. Strategies to Modify the Drug Release from Pharmaceutical Systems will address principles, systems, applications and advances in the field.It will be principally a textbook and a reference source of strategies to modify the drug release. Moreover, the characterization, mathematical and physicochemical models, applications and the systems will be discussed. - Addresses the principles, systems, applications and advances in the field of drug delivery - Highlights the mathematical and physicochemical principles related to strategies - Discusses drug release and its possible modifications
This invaluable reference presents a comprehensive review of the basic methods for characterizing bioadhesive materials and improving vehicle targeting and uptake-offering possibilities for reformulating existing compounds to create new pharmaceuticals at lower development costs. Evaluates the unique carrier characteristics of bioadhesive polymers and their power to enhance localization of delivered agents, local bioavailability, and drug absorption and transport! Written by over 50 international experts and reflecting broad knowledge of both traditional bioadhesive strategies and novel clinical applications, Bioadhesive Drug Delivery Systems discusses mechanical and chemical bonding, polymer-mucus interactions, the effect of surface energy in bioadhesion, polymer hydration, and mucus rheology analyzes biochemical properties of mucus and glycoproteins, cell adhesion molecules, and cellular interaction with two- and three-dimensional surfaces covers microbalances and magnetic force transducers, atomic force microscopy, direct measurements of molecular level adhesions, and methods to measure cell-cell interactions examines bioadhesive carriers, diffusion or penetration enhancers, and lectin-targeted vehicles describes vaginal, nasal, buccal, ocular, and transdermal drug delivery reviews bioadhesive interactions with the mucosal tissues of the eye and mouth, and those in the respiratory, urinary, and gastrointestinal tracts explores issues of product development, clinical testing, and production and more! Amply referenced with over 1400 bibliographic citations, and illustrated with more than 300 drawings, photographs, tables, and display equations, Bioadhesive Drug Delivery Systems serves as a sound basis for innovation in bioadhesive systems and an excellent introduction to the subject. This unique reference is ideal for pharmaceutical scientists and technologists; chemical, polymer, and plastics engineers; biochemists; physical, surface, and colloid chemists; biologists; and upper-level undergraduate and graduate students in these disciplines.
Advanced Drug Delivery Systems in the Management of Cancer discusses recent developments in nanomedicine and nano-based drug delivery systems used in the treatment of cancers affecting the blood, lungs, brain, and kidneys. The research presented in this book includes international collaborations in the area of novel drug delivery for the treatment of cancer. Cancer therapy remains one of the greatest challenges in modern medicine, as successful treatment requires the elimination of malignant cells that are closely related to normal cells within the body. Advanced drug delivery systems are carriers for a wide range of pharmacotherapies used in many applications, including cancer treatment. The use of such carrier systems in cancer treatment is growing rapidly as they help overcome the limitations associated with conventional drug delivery systems. Some of the conventional limitations that these advanced drug delivery systems help overcome include nonspecific targeting, systemic toxicity, poor oral bioavailability, reduced efficacy, and low therapeutic index. This book begins with a brief introduction to cancer biology. This is followed by an overview of the current landscape in pharmacotherapy for the cancer management. The need for advanced drug delivery systems in oncology and cancer treatment is established, and the systems that can be used for several specific cancers are discussed. Several chapters of the book are devoted to discussing the latest technologies and advances in nanotechnology. These include practical solutions on how to design a more effective nanocarrier for the drugs used in cancer therapeutics. Each chapter is written with the goal of informing readers about the latest advancements in drug delivery system technologies while reinforcing understanding through various detailed tables, figures, and illustrations. Advanced Drug Delivery Systems in the Management of Cancer is a valuable resource for anyone working in the fields of cancer biology and drug delivery, whether in academia, research, or industry. The book will be especially useful for researchers in drug formulation and drug delivery as well as for biological and translational researchers working in the field of cancer. - Presents an overview of the recent perspectives and challenges within the management and diagnosis of cancer - Provides insights into how advanced drug delivery systems can effectively be used in the management of a wide range of cancers - Includes up-to-date information on diagnostic methods and treatment strategies using controlled drug delivery systems
Multifunctional Theranostic Nanomedicines in Cancer focuses on new trends, applications, and the significance of novel multifunctional nanotheranostics in cancer imaging for diagnosis and treatment. Cancer nanotechnology offers new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions—including targeting, imaging, and therapy—have been intensively studied with the goal of overcoming the limitations of conventional cancer diagnosis and therapy. Thus theranostic nanomedicines have emerged in recent years to provide an efficient and safer alternative in cancer management. This book covers polymer-based therapies, lipid-based therapies, inorganic particle-based therapies, photo-related therapies, radiotherapies, chemotherapies, and surgeries. Multifunctional Theranostic Nanomedicines in Cancer offers an indispensable guide for researchers in academia, industry, and clinical settings; it is also ideal for postgraduate students; and formulation scientists working on cancer. - Provides a comprehensive resource of recent scientific progress and novel applications of theranostic nanomedicines - Discusses treatment options from a pharmaceutical sciences perspective - Includes translational science and targeted CNS cancer treatment
Pain is both a symptom and a disease. It manifests in multiple forms and its treatment is complex. Physical, social, economic, and emotional consequences of pain can impair an individual's overall health, well-being, productivity, and relationships in myriad ways. The impact of pain at a population level is vast and, while estimates differ, the Centers for Disease Control and Prevention reported that 50 million U.S. adults are living in pain. In terms of pain's global impact, estimates suggest the problem affects approximately 1 in 5 adults across the world, with nearly 1 in 10 adults newly diagnosed with chronic pain each year. In recent years, the issues surrounding the complexity of pain management have contributed to increased demand for alternative strategies for treating pain. One such strategy is to expand use of topical pain medicationsâ€"medications applied to intact skin. This nonoral route of administration for pain medication has the potential benefit, in theory, of local activity and fewer systemic side effects. Compounding is an age-old pharmaceutical practice of combining, mixing, or adjusting ingredients to create a tailored medication to meet the needs of a patient. The aim of compounding, historically, has been to provide patients with access to therapeutic alternatives that are safe and effective, especially for people with clinical needs that cannot otherwise be met by commercially available FDA-approved drugs. Compounded Topical Pain Creams explores issues regarding the safety and effectiveness of the ingredients in these pain creams. This report analyzes the available scientific data relating to the ingredients used in compounded topical pain creams and offers recommendations regarding the treatment of patients.