Much of the world’s petroleum is located on continental margins, and any further development of these offshore deposits would be impossible without new technologies and new methods contained in this volume. Written by some of the world’s foremost authorities on oil and gas, this volume explains for the practicing engineer and the engineering student some of the most important and cutting-edge techniques for developing offshore fields on continental margins.
Whether as a textbook for the petroleum engineering student or a reference for the veteran engineer working in the field, this new volume is a valuable asset in the engineer's library for new, tested methods of more efficient oil and gas exploration and production and better estimating methods. In this book, the authors combine a rigorous, yet easy to understand, approach to petrophysics and how it is applied to petroleum and environmental engineering to solve multiple problems that the engineer or geologist faces every day. Useful in the prediction of everything from crude oil composition, pore size distribution in reservoir rocks, groundwater contamination, and other types of forecasting, this approach provides engineers and students alike with a convenient guide to many real-world applications. Fluid dynamics is an extremely important part of the extraction process, and petroleum geologists and engineers must have a working knowledge of fluid dynamics of oil and gas reservoirs in order to find them and devise the best plan for extraction, before drilling can begin. This book offers the engineer and geologist a fundamental guide for accomplishing these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. The approach taken in Fluid Dynamics of Oil and Gas Reservoirs is unique and has not been addressed until now in a book format. Readers now have the ability to review some of the most well-known fields in the world, from the USA to Russia and Asia. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering.
During the past 10 years, the Oil industry in India has seen a tremendous rise in exploration activity with several major E&P companies generating vast amount of new geological and geophysical data. The availability of such integrated data sets (gravity, magnetic, seismic, drilled wells), especially in the deep offshore basins, has led the authors to revisit earlier concepts and models in order to redefine the tectonic framework of major offshore basins along the Indian continental margins. The book covers the stratigraphic evolution, play types and the classification of major offshore basins both in shallow and deepwater environments. - Incorporation of latest dataset (specially the seismic, gravity and magnetic) - Analogy of global offshore basins with India - Sedimentation and depositional history of Bengal fan and Indus fan - Redefinition of major tectonic framework of the margins - Exceleent high quality graphics that include: seismic sections, gravity-magnetic maps, conceptual geological models and new revised tectonic elements
Electrokinetics is a term applied to a group of physicochemical phenomena involving the transport of charges, action of charged particles, effects of applied electric potential and fluid transport in various porous media to allow for a desired migration or flow to be achieved. These phenomena include electrokinetics, electroosmosis, ion migration, electrophoresis, streaming potential and electroviscosity. These phenomena are closely related and all contribute to the transport and migration of different ionic species and chemicals in porous media. The physicochemical and electrochemical properties of a porous medium and the pore fluid, and the magnitudes of the applied electrical potential all impact the direction and velocity of the fluid flow. Also, an electrical potential is generated upon the forced passage of fluid carrying charged particles through a porous medium. The use of electrokinetics in the field of petroleum and environmental engineering was groundbreaking when George Chilingar pioneered its use decades ago, but it has only been in recent years that its full potential has been studied. This is the first volume of its kind ever written, offering the petroleum or environmental engineer a practical "how to" book on using electrokinetics for more efficient and better oil recovery and recovery from difficult reservoirs. This groundbreaking volume is a must-have for any petroleum engineer working in the field, and for students and faculty in petroleum engineering departments worldwide.
With petroleum-related spills, explosions, and health issues in the headlines almost every day, the issue of remediation of petroleum and petroleum products is taking on increasing importance, for the survival of our environment, our planet, and our future. This book is the first of its kind to explore this difficult issue from an engineering and scientific point of view and offer solutions and reasonable courses of action. This book will guide the reader through the various methods that are used for the bioremediation of petroleum and petroleum products. The text is easy to read and includes many up-to-date and topical references. This book introduces the reader to the science and technology of biodegradation—a key process in the bioremediation of petroleum and petroleum-based contaminants at spill sites. The contaminants of concern in the molecularly variable petroleum and petroleum products can be degraded under appropriate conditions. But the success of the process depends on the ability to determine the necessary conditions and establish them in the contaminated environment. Although the prime focus of the book is to determine the mechanism, extent, and efficiency of biodegradation, it is necessary to know the composition of the original petroleum or petroleum product. The laws of science dictate what can or cannot be done with petroleum and petroleum products to ensure that biodegradation (hence, bioremediation) processes are effective. The science of the composition of petroleum and petroleum products is at the core of understanding the chemistry of biodegradation and bioremediation processes. Hence, inclusion of petroleum analyses and properties along with petroleum product analyses and properties is a necessary part of this text. Bioremediation of Petroleum and Petroleum Products: Summarizes the pros and cons of remediation of petroleum and petroleum-based products, from an environmental perspective Gives examples of unethical behavior and how they should be corrected Offers arguments and elucidates engineering considerations on all sides of these difficult environmental and economic issues
Fossil fuels, especially petroleum, are still the primary energy source all over the world. With the advent of hydraulic fracturing (i.e. "fracking"), directional drilling, and other technological advances, petroleum and reservoir engineers all over the world have been able to produce much greater results, in much more difficult areas, than ever before, to meet higher global demand. "Enhanced oil recovery (EOR)" is one of the hottest and most important topics in this industry. New technologies and processes must be continually discovered and developed, even as renewable energy begins to grow and become more fruitful, as the demand for more and more energy continues to grow worldwide. This groundbreaking and highly anticipated study discusses the scientific fundamentals of resonance macro- and micro-mechanics of petroleum reservoirs and its petroleum industry applications. It contains an overview of the research and engineering results of resonance macro- and micro-mechanics of petroleum reservoirs, which provide the scientific and applied foundations for the creation of groundbreaking wave technologies for production stimulation and enhanced oil recovery. A valuable tool for the petroleum or reservoir engineer in the field, this volume is also intended for students, teachers, scientists and practitioners who are interested in the fundamentals, development, and application of leading-edge technologies in the petroleum industry and other industrial sectors.
This book is designed to help scientifically astute non-specialists understand basic geophysical and computational fluid dynamics concepts relating to oil spill simulations, and related modeling issues and challenges. A valuable asset to the engineer or manager working off-shore in the oil and gas industry, the authors, a team of renowned geologists and engineers, offer practical applications to mitigate any offshore spill risks, using research never before published.
Oil and gas still power the bulk of our world, from automobiles and the power plants that supply electricity to our homes and businesses, to jet fuel, plastics, and many other products that enrich our lives. With the relatively recent development of hydraulic fracturing ("fracking"), multilateral, directional, and underbalanced drilling, and enhanced oil recovery, oil and gas production is more important and efficient than ever before. Along with these advancements, as with any new engineering process or technology, come challenges, many of them environmental. More than just a text that outlines the environmental challenges of oil and gas production that have always been there, such as gas migration and corrosion, this groundbreaking new volume takes on the most up-to-date processes and technologies involved in this field. Filled with dozens of case studies and examples, the authors, two of the most well-known and respected petroleum engineers in the world, have outlined all of the major environmental aspects of oil and gas production and how to navigate them, achieving a more efficient, effective, and profitable operation. This groundbreaking volume is a must-have for any petroleum engineer working in the field, and for students and faculty in petroleum engineering departments worldwide.