Membrane Separation Processes

Membrane Separation Processes

Author: Ahmad Fauzi Ismail

Publisher: Elsevier

Published: 2021-10-21

Total Pages: 276

ISBN-13: 0128196262

DOWNLOAD EBOOK

Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications. Written by renowned experts with extensive experience with industry, education and R&D who have complementary expertise In-depth coverage of the most important conventional and emerging membrane processes Provides fundamental membrane theories for solving problems in separation processes without using complicated software


Synthetic Membranes and Membrane Separation Processes

Synthetic Membranes and Membrane Separation Processes

Author: Takeshi Matsuura

Publisher: CRC Press

Published: 1993-12-17

Total Pages: 482

ISBN-13: 9780849342028

DOWNLOAD EBOOK

Synthetic Membranes and Membrane Separation Processes addresses both fundamental and practical aspects of the subject. Topics discussed in the book cover major industrial membrane separation processes, including reverse osmosis, ultrafiltration, microfiltration, membrane gas and vapor separation, and pervaporation. Membrane materials, membrane preparation, membrane structure, membrane transport, membrane module and separation design, and applications are discussed for each separation process. Many problem-solving examples are included to help readers understand the fundamental concepts of the theory behind the processes. The book will benefit practitioners and students in chemical engineering, environmental engineering, and materials science.


Pervaporation Membrane Separation Processes

Pervaporation Membrane Separation Processes

Author: Robert Y. M. Huang

Publisher: Elsevier Publishing Company

Published: 1991

Total Pages: 572

ISBN-13:

DOWNLOAD EBOOK

Hardbound. Covered here are the various aspects of pervaporation: theory and principles, separation characteristics, sorption and diffusion, thermodynamics and evaluation of polymer materials for membranes, as well as plant design and optimization. The book also includes interesting new material on the synthesis of novel copolymer membranes with very high separation potential and future implications for the pervaporation separation of biological systems and its applications in the exciting field of biochemical engineering. Special attention is paid to industrial research and applications of pervaporation membranes and plant operations involving new pervaporation processes.The book also includes a chapter dealing with the development of vapour permeation for industrial applications, which is a new variant of liquid pervaporation processes.


MEMBRANE SEPARATION PROCESSES

MEMBRANE SEPARATION PROCESSES

Author: KAUSHIK NATH

Publisher: PHI Learning Pvt. Ltd.

Published: 2017-01-01

Total Pages: 361

ISBN-13: 8120352912

DOWNLOAD EBOOK

This concise and systematically organized text, now in its second edition, gives a clear insight into various membrane separation processes. It covers the fundamentals as well as the recent developments of different processes along with their industrial applications and the products. It includes the basic principles, operating parameters, membrane hardware, flux equation, transport mechanism, and applications of membrane-based technologies. Membrane separation processes are largely rate-controlled separations which require rate analysis for complete understanding. Moreover, a higher level of mathematical analysis, along with the understanding of mass transfer, is also required. These are amply treated in different chapters of the book to make the students comprehend the membrane separation principles with ease. This textbook is primarily designed for undergraduate students of chemical engineering, biochemical engineering and biotechnology for the course in membrane separation processes. Besides, the book will also be useful to process engineers and researchers. KEY FEATURES • Provides sufficient number of examples of industrial applications related to chemical, metallurgical, biochemical and food processing industries. • Focuses on important biomedical applications of membrane-based technologies such as blood oxygenator, controlled drug delivery, plasmapheresis, and bioartificial organs. • Includes chapter-end short questions and problems to test students’ comprehension of the subject. NEW TO THIS EDITION • A new section on membrane cleaning is included. Membrane fabrication methods are supplemented with additional information (Chapter 2). • Additional information on silt density index, forward osmosis and sea water desalination (Chapter 3). • Physicochemical parameters affecting nanofiltration, determination of various resistances using resistance in series model and few more industrial applications with additional short questions (Chapter 4). • Membrane cross-linking methods used in pervaporation, factors affecting pervaporation and few more applications (Chapter 9). • Membrane distillation, membrane reactor with different modules, types of membranes and reactions for membrane reactor (Chapter 13).


Basic Equations of the Mass Transport Through a Membrane Layer

Basic Equations of the Mass Transport Through a Membrane Layer

Author: Endre Nagy

Publisher: Elsevier

Published: 2012

Total Pages: 342

ISBN-13: 0124160255

DOWNLOAD EBOOK

With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation


Pervaporation

Pervaporation

Author: Jean Garcia

Publisher:

Published: 2019

Total Pages: 0

ISBN-13: 9781536144598

DOWNLOAD EBOOK

Pervaporation is a separation process in which the selective permeation of components of a liquid mixture is achieved by way of a chemical potential gradient through a non-porous membrane. In Pervaporation: Process, Materials and Applications, the fundamentals and applications of pervaporation are described as a promising technique for the recovery of flavor compounds from dilute aqueous solutions, separation of azeotropic mixtures and for the dehydration of organic solvents. This collection also describes history of pervaporation in an effort to outline the differences between this and other membrane separation technologies including dialysis, ultrafiltration, microfiltration, nanofiltration and reverse osmosis. The closing chapter focuses on the authors on-going development of high performance bio-based cellulosic membranes for ethyl tert-butyl ether purification by pervaporation. Cellulose acetate is extremely selective for ethanol removal from ethyl tert-butyl ether, however its flux is very low. Different strategies for improving its flux while maintaining a high selectivity are described and the main relationships between membrane structure, morphology and properties are illustrated.


Fundamental Modeling of Membrane Systems

Fundamental Modeling of Membrane Systems

Author: Patricia Luis

Publisher: Elsevier

Published: 2018-06-29

Total Pages: 374

ISBN-13: 0128134844

DOWNLOAD EBOOK

Fundamental Modelling of Membrane Systems: Membrane and Process Performance summarizes the state-of-the-art modeling approaches for all significant membrane processes, from molecular transport, to process level, helping researchers and students who carry out experimental research save time and accurately interpret experimental data. The book provides an overview of the different membrane technologies, handling micro-, ultra-, and nanofiltration, reverse and forward osmosis, pervaporation, gas permeation, supported liquid membranes, membrane contactors, membrane bioreactors and ion-exchange membrane systems. Examples of hybrid membrane systems are also included. - Presents an accessible reference on how to model membranes and membrane processes - Provides a clear, mathematical description of mass transfer in membrane systems - Written by well-known, prominent authors in the field of membrane science


Membrane Technology and Applications

Membrane Technology and Applications

Author: Richard W. Baker

Publisher: John Wiley & Sons

Published: 2004-05-31

Total Pages: 556

ISBN-13: 9780470854457

DOWNLOAD EBOOK

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.


Membrane Separations Technology

Membrane Separations Technology

Author: R.D. Noble

Publisher: Elsevier

Published: 1995-01-17

Total Pages: 737

ISBN-13: 0080536182

DOWNLOAD EBOOK

The field of membrane separation technology is presently in a state of rapid growth and innovation. Many different membrane separation processes have been developed during the past half century and new processes are constantly emerging from academic, industrial, and governmental laboratories. While new membrane separation processes are being conceived with remarkable frequency, existing processes are also being constantly improved in order to enhance their economic competitiveness. Significant improvements are currently being made in many aspects of membrane separation technology: in the development of new membrane materials with higher selectivity and/or permeability, in the fabrication methods for high-flux asymmetric or composite membranes, in membrane module construction and in process design. Membrane separation technology is presently being used in an impressive variety of applications and has generated businesses totalling over one billion U.S. dollars annually.The main objective of this book is to present the principles and applications of a variety of membrane separation processes from the unique perspectives of investigators who have made important contributions to their fields. Another objective is to provide the reader with an authoritative resource on various aspects of this rapidly growing technology. The text can be used by someone who wishes to learn about a general area of application as well as by the knowledgeable person seeking more detailed information.


Comprehensive Membrane Science and Engineering

Comprehensive Membrane Science and Engineering

Author: Enrico Drioli

Publisher: Newnes

Published: 2010-07-09

Total Pages: 1528

ISBN-13: 0080932509

DOWNLOAD EBOOK

Comprehensive Membrane Science and Engineering, Four Volume Set covers all aspects of membrane science and technology - from basic phenomena to the most advanced applications and future perspectives. Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. The work presents researchers and industrial managers with an indispensable tool toward achieving these aims. Covers membrane science theory and economics, as well as applications ranging from chemical purification and natural gas enrichment to potable water Includes contributions and case studies from internationally recognized experts and from up-and-coming researchers working in this multi-billion dollar field Takes a unique, multidisciplinary approach that stimulates research in hybrid technologies for current (and future) life-saving applications (artificial organs, drug delivery)