Perturbation Analysis of Optimization Problems

Perturbation Analysis of Optimization Problems

Author: J.Frederic Bonnans

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 618

ISBN-13: 1461213940

DOWNLOAD EBOOK

A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.


Perturbation Analysis of Optimization Problems

Perturbation Analysis of Optimization Problems

Author: J.Frederic Bonnans

Publisher: Springer Science & Business Media

Published: 2000-05-11

Total Pages: 626

ISBN-13: 9780387987057

DOWNLOAD EBOOK

A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.


Stochastic Simulation Optimization For Discrete Event Systems: Perturbation Analysis, Ordinal Optimization And Beyond

Stochastic Simulation Optimization For Discrete Event Systems: Perturbation Analysis, Ordinal Optimization And Beyond

Author: Chun-hung Chen

Publisher: World Scientific

Published: 2013-07-03

Total Pages: 274

ISBN-13: 9814513024

DOWNLOAD EBOOK

Discrete event systems (DES) have become pervasive in our daily lives. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling these stochastic simulations has long been a “hard nut to crack”. The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.


Perturbations, Optimization, and Statistics

Perturbations, Optimization, and Statistics

Author: Tamir Hazan

Publisher: MIT Press

Published: 2017-09-22

Total Pages: 412

ISBN-13: 0262337940

DOWNLOAD EBOOK

A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.


Constructive Nonsmooth Analysis and Related Topics

Constructive Nonsmooth Analysis and Related Topics

Author: Vladimir F. Demyanov

Publisher: Springer Science & Business Media

Published: 2013-11-12

Total Pages: 258

ISBN-13: 1461486157

DOWNLOAD EBOOK

This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.


Multivalued Analysis and Nonlinear Programming Problems with Perturbations

Multivalued Analysis and Nonlinear Programming Problems with Perturbations

Author: B. Luderer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 218

ISBN-13: 1475734689

DOWNLOAD EBOOK

The book presents a treatment of topological and differential properties of multivalued mappings and marginal functions. In addition, applications to sensitivity analysis of nonlinear programming problems under perturbations are studied. Properties of marginal functions associated with optimization problems are analyzed under quite general constraints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume. Nonlinear programming problems involving quasidifferentiable functions are considered as well. A significant part of the results are based on theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov, and have never been published in English before. It contains all the necessary information from multivalued analysis and does not require special knowledge, but assumes basic knowledge of calculus at an undergraduate level.


Variational Analysis and Applications

Variational Analysis and Applications

Author: Franco Giannessi

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 1163

ISBN-13: 0387242767

DOWNLOAD EBOOK

This Volume contains the (refereed) papers presented at the 38th Conference of the School of Mathematics "G.Stampacchia" of the "E.Majorana" Centre for Scientific Culture of Erice (Sicily), held in Memory ofG. Stampacchia and J.-L. Lions in the period June 20 - July 2003. The presence of participants from Countries has greatly contributed to the success of the meeting. The School of Mathematics was dedicated to Stampacchia, not only for his great mathematical achievements, but also because He founded it. The core of the Conference has been the various features of the Variational Analysis and their motivations and applications to concrete problems. Variational Analysis encompasses a large area of modem Mathematics, such as the classical Calculus of Variations, the theories of perturbation, approximation, subgradient, subderivates, set convergence and Variational Inequalities, and all these topics have been deeply and intensely dealt during the Conference. In particular, Variational Inequalities, which have been initiated by Stampacchia, inspired by Signorini Problem and the related work of G. Fichera, have offered a very great possibility of applications to several fundamental problems of Mathematical Physics, Engineering, Statistics and Economics. The pioneer work of Stampacchia and Lions can be considered as the basic kernel around which Variational Analysis is going to be outlined and constructed. The Conference has dealt with both finite and infinite dimensional analysis, showing that to carry on these two aspects disjointly is unsuitable for both.


Convex and Stochastic Optimization

Convex and Stochastic Optimization

Author: J. Frédéric Bonnans

Publisher: Springer

Published: 2019-04-24

Total Pages: 320

ISBN-13: 3030149773

DOWNLOAD EBOOK

This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.


Semi-Infinite Programming

Semi-Infinite Programming

Author: Rembert Reemtsen

Publisher: Springer Science & Business Media

Published: 1998-04-30

Total Pages: 440

ISBN-13: 9780792350545

DOWNLOAD EBOOK

Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.