Perspectives in Flow Control and Optimization

Perspectives in Flow Control and Optimization

Author: Max D. Gunzburger

Publisher: SIAM

Published: 2003-01-01

Total Pages: 275

ISBN-13: 9780898718720

DOWNLOAD EBOOK

Flow control and optimization has been an important part of experimental flow science throughout the last century. As research in computational fluid dynamics (CFD) matured, CFD codes were routinely used for the simulation of fluid flows. Subsequently, mathematicians and engineers began examining the use of CFD algorithms and codes for optimization and control problems for fluid flows. Perspectives in Flow Control and Optimization presents flow control and optimization as a subdiscipline of computational mathematics and computational engineering. It introduces the development and analysis of several approaches for solving flow control and optimization problems through the use of modern CFD and optimization methods. The author discusses many of the issues that arise in the practical implementation of algorithms for flow control and optimization, and provides the reader with a clear idea of what types of flow control and optimization problems can be solved, how to develop effective algorithms for solving such problems, and potential problems in implementing the algorithms. Audience: this book is written for both those new to the field of control and optimization as well as experienced practitioners, including engineers, applied mathematicians, and scientists interested in computational methods for flow control and optimization. Readers with a solid background in calculus and only slight familiarity with partial differential equations should find the book easy to understand. Knowledge of fluid mechanics, computational fluid dynamics, calculus of variations, control theory or optimization is beneficial, but is not essential, to comprehend the bulk of the presentation. Only Chapter 6 requires a substantially higher level of mathematical knowledge, most notably in the areas of functional analysis, numerical analysis, and partial differential equations.


Stochastic Processes, Estimation, and Control

Stochastic Processes, Estimation, and Control

Author: Jason L. Speyer

Publisher: SIAM

Published: 2008-01-01

Total Pages: 392

ISBN-13: 0898718597

DOWNLOAD EBOOK

Uncertainty and risk are integral to engineering because real systems have inherent ambiguities that arise naturally or due to our inability to model complex physics. The authors discuss probability theory, stochastic processes, estimation, and stochastic control strategies and show how probability can be used to model uncertainty in control and estimation problems. The material is practical and rich in research opportunities.


The Shapes of Things

The Shapes of Things

Author: Shawn W. Walker

Publisher: SIAM

Published: 2015-06-25

Total Pages: 156

ISBN-13: 1611973961

DOWNLOAD EBOOK

Many things around us have properties that depend on their shape--for example, the drag characteristics of a rigid body in a flow. This self-contained overview of differential geometry explains how to differentiate a function (in the calculus sense) with respect to a "shape variable." This approach, which is useful for understanding mathematical models containing geometric partial differential equations (PDEs), allows readers to obtain formulas for geometric quantities (such as curvature) that are clearer than those usually offered in differential geometry texts. Readers will learn how to compute sensitivities with respect to geometry by developing basic calculus tools on surfaces and combining them with the calculus of variations. Several applications that utilize shape derivatives and many illustrations that help build intuition are included.


Nonlinear Output Regulation

Nonlinear Output Regulation

Author: Jie Huang

Publisher: SIAM

Published: 2004-11-01

Total Pages: 330

ISBN-13: 0898715628

DOWNLOAD EBOOK

This book provides a comprehensive and in-depth treatment of the nonlinear output regulation problem.


Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation

Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation

Author: Kevin Thomas Carlberg

Publisher: Stanford University

Published: 2011

Total Pages: 130

ISBN-13:

DOWNLOAD EBOOK

Despite the advent and maturation of high-performance computing, high-fidelity physics-based numerical simulations remain computationally intensive in many fields. As a result, such simulations are often impractical for time-critical applications such as fast-turnaround design, control, and uncertainty quantification. The objective of this thesis is to enable rapid, accurate analysis of high-fidelity nonlinear models to enable their use in time-critical settings. Model reduction presents a promising approach for realizing this goal. This class of methods generates low-dimensional models that preserves key features of the high-fidelity model. Such methods have been shown to generate fast, accurate solutions when applied to specialized problems such as linear time-invariant systems. However, model reduction techniques for highly nonlinear systems has been limited primarily to approaches based on the heuristic proper orthogonal decomposition (POD)--Galerkin approach. These methods often generate inaccurate responses because 1) POD--Galerkin does not generally minimize any measure of the system error, and 2) the POD basis is not constructed to minimize errors in the system's outputs of interest. Furthermore, simulation times for these models usually remain large, as reducing the dimension of a nonlinear system does not necessarily reduce its computational complexity. This thesis presents two model reduction techniques that addresses these shortcomings of the POD--Galerkin method. The first method is a `compact POD' approach for computing the small-dimensional trial basis; this approach is applicable to parameterized static systems. The compact POD basis is constructed using a goal-oriented framework that allows sensitivity derivatives to be employed as snapshots. The second method is a Gauss--Newton with approximated tensors (GNAT) method applicable to nonlinear systems. Similar to other POD-based approaches, the GNAT method first executes high-fidelity simulations during a costly `offline' stage; it computes a POD subspace that optimally represents the state as observed during these simulations. To compute fast, accurate `online' solutions, the method introduces two approximations that satisfy optimality and consistency conditions. First, the method decreases the system dimension by searching for the solutions in the low-dimensional POD subspace. As opposed to performing a Galerkin projection, the method handles the resulting overdetermined system of equations arising at each time step by formulating a least-squares problem; this ensures that a measure of the system error (i.e. the residual) is minimized. Second, the method decreases the model's computational complexity by approximating the residual and Jacobian using the `gappy POD' technique; this requires computing only a few rows of the approximated quantities. For computational mechanics problems, the GNAT method leads to the concept of a sample mesh: the subset of the mesh needed to compute the selected rows of the residual and Jacobian. Because the reduced-order model uses only the sample mesh for computations, the online stage requires minimal computational resources.


Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing

Author: Michael A. Heroux

Publisher: SIAM

Published: 2006-01-01

Total Pages: 421

ISBN-13: 9780898718133

DOWNLOAD EBOOK

Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.


Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization

Author: Lorenz T. Biegler

Publisher: SIAM

Published: 2007-01-01

Total Pages: 335

ISBN-13: 9780898718935

DOWNLOAD EBOOK

Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.


Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Author: Jan S Hesthaven

Publisher: Springer

Published: 2015-08-20

Total Pages: 139

ISBN-13: 3319224700

DOWNLOAD EBOOK

This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.


Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3

Author: Roland Platz

Publisher: Springer Nature

Published: 2023-10-06

Total Pages: 208

ISBN-13: 3031370031

DOWNLOAD EBOOK

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Introduction of Uncertainty Quantification Uncertainty Quantification in Dynamics Model Form Uncertainty and Selection incl. Round Robin Challenge Sensor and Information Fusion Virtual Sensing, Certification, and Real-Time Monitoring Surrogate Modeling


Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations

Author: Alfio Quarteroni

Publisher: Springer

Published: 2015-08-19

Total Pages: 305

ISBN-13: 3319154311

DOWNLOAD EBOOK

This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit