This book presents revised versions of tutorial lectures given at the IEEE/CS Symposium on modeling, analysis, and simulation of computer and telecommunication systems held in Orlando, FL, USA in October 2003. The lectures are grouped into three parts on performance and QoS of modern wired and wireless networks, current advances in performance modeling and simulation, and other specific applications of these methodologies. This tutorial book is targeted to both practitioners and researchers. The practitioner will benefit from numerous pointers to performance and QoS issues; the pedagogical style and plenty of references will be of great use in solving practical problems. The researcher and advanced student are offered a representative set of topics not only for their research value but also for their novelty and use in identifying areas of active research.
Use BPF Tools to Optimize Performance, Fix Problems, and See Inside Running Systems BPF-based performance tools give you unprecedented visibility into systems and applications, so you can optimize performance, troubleshoot code, strengthen security, and reduce costs. BPF Performance Tools: Linux System and Application Observability is the definitive guide to using these tools for observability. Pioneering BPF expert Brendan Gregg presents more than 150 ready-to-run analysis and debugging tools, expert guidance on applying them, and step-by-step tutorials on developing your own. You’ll learn how to analyze CPUs, memory, disks, file systems, networking, languages, applications, containers, hypervisors, security, and the kernel. Gregg guides you from basic to advanced tools, helping you generate deeper, more useful technical insights for improving virtually any Linux system or application. • Learn essential tracing concepts and both core BPF front-ends: BCC and bpftrace • Master 150+ powerful BPF tools, including dozens created just for this book, and available for download • Discover practical strategies, tips, and tricks for more effective analysis • Analyze compiled, JIT-compiled, and interpreted code in multiple languages: C, Java, bash shell, and more • Generate metrics, stack traces, and custom latency histograms • Use complementary tools when they offer quick, easy wins • Explore advanced tools built on BPF: PCP and Grafana for remote monitoring, eBPF Exporter, and kubectl-trace for tracing Kubernetes • Foreword by Alexei Starovoitov, creator of the new BPF BPF Performance Tools will be an indispensable resource for all administrators, developers, support staff, and other IT professionals working with any recent Linux distribution in any enterprise or cloud environment.
This book brings Network Calculus closer to the network professional and will also have real appeal for postgraduates studying network performance. It provides valuable analytical tools and uses J as a means of providing a practical treatment of the subject. It builds a bridge between mathematics theory and the practical use of computers in the field of network performance analysis.
This book provides a comprehensive view of the methods and approaches for performance evaluation of computer networks. It offers a clear and logical introduction to the topic, covering both fundamental concepts and practical aspects. It enables the reader to answer a series of questions regarding performance evaluation in modern computer networking scenarios, such as ‘What, where, and when to measure?’, ‘Which time scale is more appropriate for a particular measurement and analysis?’, 'Experimentation, simulation or emulation? Why?’, and ‘How do I best design a sound performance evaluation plan?’. The book includes concrete examples and applications in the important aspects of experimentation, simulation and emulation, and analytical modeling, with strong support from the scientific literature. It enables the identification of common shortcomings and highlights where students, researchers, and engineers should focus to conduct sound performance evaluation. This book is a useful guide to advanced undergraduates and graduate students, network engineers, and researchers who plan and design proper performance evaluation of computer networks and services. Previous knowledge of computer networks concepts, mechanisms, and protocols is assumed. Although the book provides a quick review on applied statistics in computer networking, familiarity with basic statistics is an asset. It is suitable for advanced courses on computer networking as well as for more specific courses as a secondary textbook.
The Complete Guide to Optimizing Systems Performance Written by the winner of the 2013 LISA Award for Outstanding Achievement in System Administration Large-scale enterprise, cloud, and virtualized computing systems have introduced serious performance challenges. Now, internationally renowned performance expert Brendan Gregg has brought together proven methodologies, tools, and metrics for analyzing and tuning even the most complex environments. Systems Performance: Enterprise and the Cloud focuses on Linux(R) and Unix(R) performance, while illuminating performance issues that are relevant to all operating systems. You'll gain deep insight into how systems work and perform, and learn methodologies for analyzing and improving system and application performance. Gregg presents examples from bare-metal systems and virtualized cloud tenants running Linux-based Ubuntu(R), Fedora(R), CentOS, and the illumos-based Joyent(R) SmartOS(TM) and OmniTI OmniOS(R). He systematically covers modern systems performance, including the "traditional" analysis of CPUs, memory, disks, and networks, and new areas including cloud computing and dynamic tracing. This book also helps you identify and fix the "unknown unknowns" of complex performance: bottlenecks that emerge from elements and interactions you were not aware of. The text concludes with a detailed case study, showing how a real cloud customer issue was analyzed from start to finish. Coverage includes - Modern performance analysis and tuning: terminology, concepts, models, methods, and techniques - Dynamic tracing techniques and tools, including examples of DTrace, SystemTap, and perf - Kernel internals: uncovering what the OS is doing - Using system observability tools, interfaces, and frameworks - Understanding and monitoring application performance - Optimizing CPUs: processors, cores, hardware threads, caches, interconnects, and kernel scheduling - Memory optimization: virtual memory, paging, swapping, memory architectures, busses, address spaces, and allocators - File system I/O, including caching - Storage devices/controllers, disk I/O workloads, RAID, and kernel I/O - Network-related performance issues: protocols, sockets, interfaces, and physical connections - Performance implications of OS and hardware-based virtualization, and new issues encountered with cloud computing - Benchmarking: getting accurate results and avoiding common mistakes This guide is indispensable for anyone who operates enterprise or cloud environments: system, network, database, and web admins; developers; and other professionals. For students and others new to optimization, it also provides exercises reflecting Gregg's extensive instructional experience.
For more than 20 years, Network World has been the premier provider of information, intelligence and insight for network and IT executives responsible for the digital nervous systems of large organizations. Readers are responsible for designing, implementing and managing the voice, data and video systems their companies use to support everything from business critical applications to employee collaboration and electronic commerce.
A comprehensive guide to the concepts and applications of queuing theory and traffic theory Network Traffic Engineering: Models and Applications provides an advanced level queuing theory guide for students with a strong mathematical background who are interested in analytic modeling and performance assessment of communication networks. The text begins with the basics of queueing theory before moving on to more advanced levels. The topics covered in the book are derived from the most cutting-edge research, project development, teaching activity, and discussions on the subject. They include applications of queuing and traffic theory in: LTE networks Wi-Fi networks Ad-hoc networks Automated vehicles Congestion control on the Internet The distinguished author seeks to show how insight into practical and real-world problems can be gained by means of quantitative modeling. Perfect for graduate students of computer engineering, computer science, telecommunication engineering, and electrical engineering, Network Traffic Engineering offers a supremely practical approach to a rapidly developing field of study and industry.
Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications introduces you to a broad array of modeling and simulation issues related to computer networks and systems. It focuses on the theories, tools, applications and uses of modeling and simulation in order to effectively optimize networks. It describes methodologies for modeling and simulation of new generations of wireless and mobiles networks and cloud and grid computing systems. Drawing upon years of practical experience and using numerous examples and illustrative applications recognized experts in both academia and industry, discuss: - Important and emerging topics in computer networks and systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks - Methodologies, strategies and tools, and strategies needed to build computer networks and systems modeling and simulation from the bottom up - Different network performance metrics including, mobility, congestion, quality of service, security and more... Modeling and Simulation of Computer Networks and Systems is a must have resource for network architects, engineers and researchers who want to gain insight into optimizing network performance through the use of modeling and simulation. - Discusses important and emerging topics in computer networks and Systems including but not limited to; modeling, simulation, analysis and security of wireless and mobiles networks especially as they relate to next generation wireless networks - Provides the necessary methodologies, strategies and tools needed to build computer networks and systems modeling and simulation from the bottom up - Includes comprehensive review and evaluation of simulation tools and methodologies and different network performance metrics including mobility, congestion, quality of service, security and more
Computer and network systems have given us unlimited opportunities of reducing cost, improving efficiency, and increasing revenues, as demonstrated by an increasing number of computer and network applications. Yet, our dependence on computer and network systems has also exposed us to new risks, which threaten the security of, and present new challenges for protecting our assets and information on computer and network systems. The reliability of computer and network systems ultimately depends on security and quality of service (QoS) performance. This book presents quantitative modeling and analysis techniques to address these numerous challenges in cyber attack prevention and detection for security and QoS, including: the latest research on computer and network behavior under attack and normal use conditions; new design principles and algorithms, which can be used by engineers and practitioners to build secure computer and network systems, enhance security practice and move to providing QoS assurance on the Internet; mathematical and statistical methods for achieving the accuracy and timeliness of cyber attack detection with the lowest computational overhead; guidance on managing admission control, scheduling, reservation and service of computer and network jobs to assure the service stability and end-to-end delay of those jobs even under Denial of Service attacks or abrupt demands. Secure Computer and Network Systems: Modeling, Analysis and Design is an up-to-date resource for practising engineers and researchers involved in security, reliability and quality management of computer and network systems. It is also a must-read for postgraduate students developing advanced technologies for improving computer network dependability.
Architecture of Network Systems explains the practice and methodologies that will allow you to solve a broad range of problems in system design, including problems related to security, quality of service, performance, manageability, and more. Leading researchers Dimitrios Serpanos and Tilman Wolf develop architectures for all network sub-systems, bridging the gap between operation and VLSI.This book provides comprehensive coverage of the technical aspects of network systems, including system-on-chip technologies, embedded protocol processing and high-performance, and low-power design. It develops a functional approach to network system architecture based on the OSI reference model, which is useful for practitioners at every level. It also covers both fundamentals and the latest developments in network systems architecture, including network-on-chip, network processors, algorithms for lookup and classification, and network systems for the next-generation Internet.The book is recommended for practicing engineers designing the architecture of network systems and graduate students in computer engineering and computer science studying network system design. - This is the first book to provide comprehensive coverage of the technical aspects of network systems, including processing systems, hardware technologies, memory managers, software routers, and more - Develops a systematic approach to network architectures, based on the OSI reference model, that is useful for practitioners at every level - Covers both the important basics and cutting-edge topics in network systems architecture, including Quality of Service and Security for mobile, real-time P2P services, Low-Power Requirements for Mobile Systems, and next generation Internet systems