Performance Optimization of Fault Diagnosis Methods for Power Systems

Performance Optimization of Fault Diagnosis Methods for Power Systems

Author: Dinghui Wu

Publisher: Springer Nature

Published: 2022-09-18

Total Pages: 134

ISBN-13: 9811945780

DOWNLOAD EBOOK

This book focuses on the performance optimization of fault diagnosis methods for power systems including both model-driven ones, such as the linear parameter varying algorithm, and data-driven ones, such as random matrix theory. Studies on fault diagnosis of power systems have long been the focus of electrical engineers and scientists. Pursuing a holistic approach to improve the accuracy and efficiency of existing methods, the underlying concepts toward several algorithms are introduced and then further applied in various situations for fault diagnosis of power systems in this book. The primary audience for the book would be the scholars and graduate students whose research topics including the control theory, applied mathematics, fault detection, and so on.


Advanced methods for fault diagnosis and fault-tolerant control

Advanced methods for fault diagnosis and fault-tolerant control

Author: Steven X. Ding

Publisher: Springer Nature

Published: 2020-11-24

Total Pages: 664

ISBN-13: 3662620049

DOWNLOAD EBOOK

The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.


Power System Fault Diagnosis

Power System Fault Diagnosis

Author: Md Shafiullah

Publisher: Elsevier

Published: 2022-01-14

Total Pages: 430

ISBN-13: 032388430X

DOWNLOAD EBOOK

Power System Fault Diagnosis: A Wide Area Measurement Based Intelligent Approach is a comprehensive overview of the growing interests in efficient diagnosis of power system faults to reduce outage duration and revenue losses by expediting the restoration process.This book illustrates intelligent fault diagnosis schemes for power system networks, at both transmission and distribution levels, using data acquired from phasor measurement units. It presents the power grid modeling, fault modeling, feature extraction processes, and various fault diagnosis techniques, including artificial intelligence techniques, in steps. The book also incorporates uncertainty associated with line parameters, fault information (resistance and inception angle), load demand, renewable energy generation, and measurement noises. - Provides step-by-step modeling of power system networks (distribution and transmission) and faults in MATLAB/SIMULINK and real-time digital simulator (RTDS) platforms - Presents feature extraction processes using advanced signal processing techniques (discrete wavelet and Stockwell transforms) and an easy-to-understand optimal feature selection method - Illustrates comprehensive results in the graphical and tabular formats that can be easily reproduced by beginners - Highlights various utility practices for fault location in transmission networks, distribution systems, and underground cables.


Optimization Methods Applied to Power Systems

Optimization Methods Applied to Power Systems

Author: Francisco G. Montoya

Publisher: MDPI

Published: 2019-07-26

Total Pages: 382

ISBN-13: 3039211307

DOWNLOAD EBOOK

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.


Advanced methods for fault diagnosis and fault-tolerant control

Advanced methods for fault diagnosis and fault-tolerant control

Author: Steven X. Ding

Publisher: Springer

Published: 2020-11-24

Total Pages: 658

ISBN-13: 9783662620038

DOWNLOAD EBOOK

The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.


Fault-Diagnosis Systems

Fault-Diagnosis Systems

Author: Rolf Isermann

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 478

ISBN-13: 3540303685

DOWNLOAD EBOOK

With increasing demands for efficiency and product quality plus progress in the integration of automatic control systems in high-cost mechatronic and safety-critical processes, the field of supervision (or monitoring), fault detection and fault diagnosis plays an important role. The book gives an introduction into advanced methods of fault detection and diagnosis (FDD). After definitions of important terms, it considers the reliability, availability, safety and systems integrity of technical processes. Then fault-detection methods for single signals without models such as limit and trend checking and with harmonic and stochastic models, such as Fourier analysis, correlation and wavelets are treated. This is followed by fault detection with process models using the relationships between signals such as parameter estimation, parity equations, observers and principal component analysis. The treated fault-diagnosis methods include classification methods from Bayes classification to neural networks with decision trees and inference methods from approximate reasoning with fuzzy logic to hybrid fuzzy-neuro systems. Several practical examples for fault detection and diagnosis of DC motor drives, a centrifugal pump, automotive suspension and tire demonstrate applications.


Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems

Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems

Author: Fouzi Harrou

Publisher: BoD – Books on Demand

Published: 2020-04-01

Total Pages: 212

ISBN-13: 1838800913

DOWNLOAD EBOOK

Fault detection, control, and forecasting have a vital role in renewable energy systems (Photovoltaics (PV) and wind turbines (WTs)) to improve their productivity, ef?ciency, and safety, and to avoid expensive maintenance. For instance, the main crucial and challenging issue in solar and wind energy production is the volatility of intermittent power generation due mainly to weather conditions. This fact usually limits the integration of PV systems and WTs into the power grid. Hence, accurately forecasting power generation in PV and WTs is of great importance for daily/hourly efficient management of power grid production, delivery, and storage, as well as for decision-making on the energy market. Also, accurate and prompt fault detection and diagnosis strategies are required to improve efficiencies of renewable energy systems, avoid the high cost of maintenance, and reduce risks of fire hazards, which could affect both personnel and installed equipment. This book intends to provide the reader with advanced statistical modeling, forecasting, and fault detection techniques in renewable energy systems.


Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Author: Hamid Reza Karimi

Publisher: Academic Press

Published: 2021-06-05

Total Pages: 421

ISBN-13: 0128224886

DOWNLOAD EBOOK

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. - Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications - Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more - Gives numerical and simulation results in each chapter to reflect engineering practices


Artificial Intelligence Techniques in Power Systems Operations and Analysis

Artificial Intelligence Techniques in Power Systems Operations and Analysis

Author: Nagendra Singh

Publisher: CRC Press

Published: 2023-08-16

Total Pages: 235

ISBN-13: 1000921786

DOWNLOAD EBOOK

An electrical power system consists of a large number of generation, transmission, and distribution subsystems. It is a very large and complex system; hence, its installation and management are very difficult tasks. An electrical system is essentially a very large network with very large data sets. Handling these data sets can require much time to analyze and subsequently implement. An electrical system is necessary but also potentially very dangerous if not operated and controlled properly. The demand for electricity is ever increasing, so maintaining load demand without overloading the system poses challenges and difficulties. Thus, planning, installing, operating, and controlling such a large system requires new technology. Artificial intelligence (AI) applications have many key features that can support a power system and handle overall power system operations. AI-based applications can manage the large data sets related to a power system. They can also help design power plants, model installation layouts, optimize load dispatch, and quickly respond to control apparatus. These applications and their techniques have been successful in many areas of power system engineering. Artificial Intelligence Techniques in Power Systems Operations and Analysis focuses on the various challenges arising in power systems and how AI techniques help to overcome these challenges. It examines important areas of power system analysis and the implementation of AI-driven analysis techniques. The book helps academicians and researchers understand how AI can be used for more efficient operation. Multiple AI techniques and their application are explained. Also featured are relevant data sets and case studies. Highlights include: Power quality enhancement by PV-UPQC for non-linear load Energy management of a nanogrid through flair of deep learning from IoT environments Role of artificial intelligence and machine learning in power systems with fault detection and diagnosis AC power optimization techniques Artificial intelligence and machine learning techniques in power systems automation


Fault Diagnosis for Linear Discrete Time-Varying Systems and Its Applications

Fault Diagnosis for Linear Discrete Time-Varying Systems and Its Applications

Author: Maiying Zhong

Publisher: Springer Nature

Published: 2022-11-01

Total Pages: 407

ISBN-13: 9811954380

DOWNLOAD EBOOK

This book focuses on fault diagnosis for linear discrete time-varying (LDTV) systems and its applications in modern engineering processes, with more weighting placed on the development of theory and methodologies. A comprehensive and systematic study on fault diagnosis for LDTV systems is provided, covering H∞-optimization-based fault diagnosis, H∞-filtering-based fault diagnosis, parity space-based fault diagnosis, Krein space technique-aided fault detection and fault estimation, and their typical applications in linear/nonlinear processes such as satellite attitude control systems and INS/GPS systems. This book benefits researchers, engineers, and graduate students in the fields of control engineering, electrical and electronic engineering, instrumentation science, and optoelectronic engineering.