World renowned leaders in the field provide an accessible introduction to the use of Generalized Stochastic Petri Nets (GSPNs) for the performance analysis of diverse distributed systems. Divided into two parts, it begins with a summary of the major results in GSPN theory. The second section is devoted entirely to application examples which demonstrate how GSPN methodology can be used in different arenas. A simple version of the software tool used to analyse GSPN models is included with the book and a concise manual for its use is presented in the later chapters.
Any developer of discrete event systems knows that the most important quality of the final system is that it be functionally correct by exhibiting certain functionaL or qualitative properties decided upon as being important. Once assured that the system behaves correctly, it is also important that it is efficient in that its running cost is minimal or that it executes in optimum time or whatever performance measure is chosen. While functional correctness is taken for granted, the latter quantitative properties will often decide the success, or otherwise, of the system. Ideally the developer must be able to specify, design and implement his system and test it for both functional correctness and performance using only one for malism. No such formalism exists as yet. In recent years the graphical version of the Specification and Description Language (SDL) has become very popular for the specification, design and partial implementation of discrete systems. The ability to test for functional correctness of systems specified in SDL is, however, limited to time consuming simulative executions of the specification and perfor mance analysis is not directly possible. Petri nets, although graphical in format are somewhat tedious for specifying large complex systems but, on the other hand were developed exactly to test discrete, distributed systems for functional correctness. With a Petri net specification one can test, e. g. , for deadlock, live ness and boundedness of the specified system.
Traditionally, models and methods for the analysis of the functional correctness of reactive systems, and those for the analysis of their performance (and - pendability) aspects, have been studied by di?erent research communities. This has resulted in the development of successful, but distinct and largely unrelated modeling and analysis techniques for both domains. In many modern systems, however, the di?erence between their functional features and their performance properties has become blurred, as relevant functionalities become inextricably linked to performance aspects, e.g. isochronous data transfer for live video tra- mission. During the last decade, this trend has motivated an increased interest in c- bining insights and results from the ?eld of formal methods – traditionally - cused on functionality – with techniques for performance modeling and analysis. Prominent examples of this cross-fertilization are extensions of process algebra and Petri nets that allow for the automatic generation of performance models, the use of formal proof techniques to assess the correctness of randomized - gorithms, and extensions of model checking techniques to analyze performance requirements automatically. We believe that these developments markthe - ginning of a new paradigm for the modeling and analysis of systems in which qualitative and quantitative aspects are studied from an integrated perspective. We are convinced that the further worktowards the realization of this goal will be a growing source of inspiration and progress for both communities.
The two-volume set originates from the Advanced Course on Petri Nets held in Dagstuhl, Germany in September 1996; beyond the lectures given there, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. Together with its companion volume "Lectures on Petri Nets II: Applications" this book is the actual reference for the area and addresses professionals, students, lecturers, and researchers who are - interested in systems design and would like to learn to use Petri nets familiar with subareas of the theory or its applications and wish to view the whole area - interested in learning about recent results presented within a unified framework - planning to apply Petri nets in practical situations - interested in the relationship of Petri nets to other models of concurrent systems.
This book constitutes the refereed proceedings of the 11th International Conference on Modelling Tools and Techniques for Computer Communication System Performance Evaluation, TOOLS 2000, held in Schaumburg, IL, USA in March 2000. The 21 revised full papers presented were carefully reviewed and selected from a total of 49 submissions. Also included are 15 tool descriptions and one invited paper. The papers are organized in topical sections on queueing network models, optimization in mobile networks, stochastic Petri nets, simulation, formal methods and performance evaluation, and measurement tools and applications.
This book constitutes the refereed proceedings of the 11th International Conference on Modelling Tools and Techniques for Computer Communication System Performance Evaluation, TOOLS 2000, held in Schaumburg, IL, USA in March 2000. The 21 revised full papers presented were carefully reviewed and selected from a total of 49 submissions. Also included are 15 tool descriptions and one invited paper. The papers are organized in topical sections on queueing network models, optimization in mobile networks, stochastic Petri nets, simulation, formal methods and performance evaluation, and measurement tools and applications.
This book presents a set of 11 papers accompanying the lectures of leading researchers given at the 7th edition of the International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM 2007, held in Bertinoro, Italy in May/June 2007. SFM 2007 was devoted to formal techniques for performance evaluation and covered several aspects of the field.
Addresses the major issues involved in computer design and architectures. Dealing primarily with theory, tools, and techniques as related to advanced computer systems, it provides tutorials and surveys and relates new important research results. Each chapter provides background information, describes and analyzes important work done in the field, and provides important direction to the reader on future work and further readings. The topics covered include hierarchical design schemes, parallel and distributed modeling and simulation, parallel simulation tools and techniques, theoretical models for formal and performance modeling, and performance evaluation techniques.
This book presents the latest key research into the performance and reliability aspects of dependable fault-tolerant systems and features commentary on the fields studied by Prof. Kishor S. Trivedi during his distinguished career. Analyzing system evaluation as a fundamental tenet in the design of modern systems, this book uses performance and dependability as common measures and covers novel ideas, methods, algorithms, techniques, and tools for the in-depth study of the performance and reliability aspects of dependable fault-tolerant systems. It identifies the current challenges that designers and practitioners must face in order to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies, and provides system researchers, performance analysts, and practitioners with the tools to address these challenges in their work. With contributions from Prof. Trivedi's former PhD students and collaborators, many of whom are internationally recognized experts, to honor him on the occasion of his 70th birthday, this book serves as a valuable resource for all engineering disciplines, including electrical, computer, civil, mechanical, and industrial engineering as well as production and manufacturing.