Data Science for Healthcare

Data Science for Healthcare

Author: Sergio Consoli

Publisher: Springer

Published: 2019-02-23

Total Pages: 367

ISBN-13: 3030052494

DOWNLOAD EBOOK

This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book.


Methodologies for Knowledge Discovery and Data Mining

Methodologies for Knowledge Discovery and Data Mining

Author: Ning Zhong

Publisher: Springer Science & Business Media

Published: 1999-04-14

Total Pages: 566

ISBN-13: 3540658661

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.


Advances in Soft Computing

Advances in Soft Computing

Author: Rajkumar Roy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 627

ISBN-13: 1447108191

DOWNLOAD EBOOK

Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a selection of papers that were first presented in June 1998 at the 3rd On-line World Conference on Soft Computing in Engineering Design and Manufacturing. Amongst these are four invited papers by World-renowned researchers in the field. Soft computing is a collection of methodologies which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. The area of applications of soft computing is extensive. Principally the constituents of soft computing are: fuzzy computing, neuro-computing, genetic computing and probabilistic computing. The topics in this book are well focused on engineering design an d manufacturing. This broad collection of 43 research papers, has been arranged into nine parts by the editors. These include: Design Support Systems, Intelligent Control, Data Mining and New Topics in EA basics. The papers on evolutionary design and optimisation are of particular interest. Innovative techniques are explored and the reader is introduced to new, highly advanced research results. The editors present a unique collection of papers that provide a comprehensive overview of current developments in soft computing research around the world.


Encyclopedia of Data Warehousing and Mining

Encyclopedia of Data Warehousing and Mining

Author: Wang, John

Publisher: IGI Global

Published: 2005-06-30

Total Pages: 1382

ISBN-13: 1591405599

DOWNLOAD EBOOK

Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.


Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications

Author: Ken Yale

Publisher: Elsevier

Published: 2017-11-09

Total Pages: 824

ISBN-13: 0124166458

DOWNLOAD EBOOK

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications


Statistical and Machine-Learning Data Mining:

Statistical and Machine-Learning Data Mining:

Author: Bruce Ratner

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 690

ISBN-13: 149879761X

DOWNLOAD EBOOK

Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.


Smart Trends in Computing and Communications: Proceedings of SmartCom 2020

Smart Trends in Computing and Communications: Proceedings of SmartCom 2020

Author: Yu-Dong Zhang

Publisher: Springer Nature

Published: 2020-07-17

Total Pages: 495

ISBN-13: 981155224X

DOWNLOAD EBOOK

This book gathers high-quality papers presented at the International Conference on Smart Trends for Information Technology and Computer Communications (SmartCom 2020), organized by the Global Knowledge Research Foundation (GR Foundation) from 23 to 24 January 2020. It covers the state-of-the-art and emerging topics in information, computer communications, and effective strategies for their use in engineering and managerial applications. It also explores and discusses the latest technological advances in, and future directions for, information and knowledge computing and its applications.


Proceedings of Congress on Control, Robotics, and Mechatronics

Proceedings of Congress on Control, Robotics, and Mechatronics

Author: Pradeep Kumar Jha

Publisher: Springer Nature

Published: 2023-11-09

Total Pages: 675

ISBN-13: 9819951801

DOWNLOAD EBOOK

This book features high-quality research papers presented at the International Conference of Mechanical and Robotic Engineering “Congress on Control, Robotics, and Mechatronics” (CRM 2023), jointly organized by Modi Institute of Technology, Kota, India, and Soft Computing Research Society, India, during 25–26 March 2023. This book discusses the topics such as combustion and fuels, controls and dynamics, fluid mechanics, I.C. engines and automobile engineering, machine design, mechatronics, rotor dynamics, solid mechanics, thermodynamics and combustion engineering, composite material, aerodynamics, aerial vehicles, missiles and robots, automatic design and manufacturing, artificial intelligence, unmanned aerial vehicles, autonomous robotic vehicles, evolutionary robotics, humanoids, hardware architecture, industrial robotics, intelligent control systems, microsensors and actuators, multi-robots systems, neural decoding algorithms, neural networks for mobile robots, space robotics, control theory and applications, model predictive control, variable structure control, and decentralized control.


Data Mining

Data Mining

Author: Ian H. Witten

Publisher: Elsevier

Published: 2011-02-03

Total Pages: 665

ISBN-13: 0080890369

DOWNLOAD EBOOK

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization