Human cells produce at least 30,000 different proteins. Each has a specific function characterized by a unique sequence and native conformation that allows it to perform that function. While research in this post-genomic era has created a deluge of invaluable information, the field has lacked for an authoritative introductory text needed to inform
The growing area of peptide and protein therapeutics research is of paramount importance to medical application and advancement. A needed reference for entry level researchers and researchers working in interdisciplinary / collaborative projects, Peptide and Protein Delivery addresses the current and emerging routes for delivery of therapeutics. Covering cerebral delivery, pulmonary delivery, transdermal delivery, intestinal delivery, ocular delivery, parenteral delivery, and nasal delivery, this resource offers an overview of the main routes in therapeutics. Researchers across biochemistry, pharmaceutical, molecular biology, cell biology, immunology, chemistry and biotechnology fields will find this publication invaluable for peptide and protein laboratory research. - Discusses the most recent data, ideas and concepts - Presents case studies and an industrial perspective - Details information from the molecular level to bioprocessing - Thought provoking, for the novice to the specialist - Timely, for today's biopharmaceuticals market
This thorough book aims to present the methods that have enabled the success of peptides and proteins in a wide variety of applications. It opens with a section on chemical tools applied to the production or engineering of peptides and proteins, and concludes with a collection of chapters on biological approaches used to engineer structure and function in peptides and proteins. As a book in the Springer Protocols Handbooks series, chapters include the kind of detailed descriptions and tips necessary for successful results in practice. Authoritative and practical, Peptide and Protein Engineering: From Concepts to Biotechnological Applications will be of great use to scientists in academia and industry seeking a better understanding of the emerging principles and methodologies in peptide and protein engineering.
Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair highlights the various important considerations that go into biomaterial development, both in terms of fundamentals and applications. After covering a general introduction to protein and cell interactions with biomaterials, the book discusses proteins in biomaterials that mimic the extracellular matrix (ECM). The properties, fabrication and application of peptide biomaterials and protein-based biomaterials are discussed in addition to in vivo and in vitro studies. This book is a valuable resource for researchers, scientists and advanced students interested in biomaterials science, chemistry, molecular biology and nanotechnology. - Presents an all-inclusive and authoritative coverage of the important role which protein and peptides play as biomaterials for tissue regeneration - Explores protein and peptides from the fundamentals, to processing and applications - Written by an international group of leading biomaterials researchers
Back for a new edition, Zoe Draelos' outstanding resource to cosmetic dermatology again provides a highly-illustrated, clinical guide to the full range of cosmetic skin treatments. Bringing together experts from research, industry, surgery and practice, it is structured in four distinct parts for easy navigation by the busy clinician: Basic Concepts - giving an overview of the physiology pertinent to cosmetic dermatology and the delivery systems by which treatments can take effect; Hygiene Products - evaluating cleansing and moisturising products; Adornment - looking at aesthetic techniques such as cosmetics, nail protheses and hair treatment; Antiaging - ie, injectables, resurfacing and skin contouring techniques, and the rapidly growing area of Cosmeceuticals. With over 300 high-quality images and key summary boxes throughout, this new edition incorporates the newest procedural innovations in this rapidly developing field. Perfect for all dermatologists, especially those specialising in cosmetic dermatology and whether hospital-based or in private practice, it provides the complete cosmetic regimen for your patients and will be an indispensable tool to consult over and over again.
Organic chemists working on the synthesis of natural products have long found a special challenge in the preparation of peptides and proteins. However, more reliable, more efficient synthetic preparation methods have been developed in recent years. This reference evaluates the most important synthesis methods available today, and also considers methods that show promise for future applications. This text describes the state of the art in efficient synthetic methods for the synthesis of both natural and artificial large peptide and protein molecules. Subjects include an introduction to basic topics, linear solid-phase synthesis of peptides, peptide synthesis in solution, convergent solid-phase synthesis, methods for the synthesis of branched peptides, formation of disulfide bridges, and more. The book emphasizes strategies and tactics that must be considered for the successful synthesis of peptides.
Principles and Applications of Molecular Diagnostics serves as a comprehensive guide for clinical laboratory professionals applying molecular technology to clinical diagnosis. The first half of the book covers principles and analytical concepts in molecular diagnostics such as genomes and variants, nucleic acids isolation and amplification methods, and measurement techniques, circulating tumor cells, and plasma DNA; the second half presents clinical applications of molecular diagnostics in genetic disease, infectious disease, hematopoietic malignancies, solid tumors, prenatal diagnosis, pharmacogenetics, and identity testing. A thorough yet succinct guide to using molecular testing technology, Principles and Applications of Molecular Diagnostics is an essential resource for laboratory professionals, biologists, chemists, pharmaceutical and biotech researchers, and manufacturers of molecular diagnostics kits and instruments. - Explains the principles and tools of molecular biology - Describes standard and state-of-the-art molecular techniques for obtaining qualitative and quantitative results - Provides a detailed description of current molecular applications used to solve diagnostics tasks
The introduction of high-performance liquid chromatography (HPLC) to the analysis of peptides and proteins some 25 years ago revolutionized the biological sciences by enabling the rapid and sensitive analysis of peptide and protein structure through the exquisite speed, sensitivity, and resolution that can be easily obtained. Today, HPLC in its various modes has become the pivotal technique in the characterization of peptides and proteins and currently plays a critical role in both our understanding of biological processes and in the development of peptide- and protein-based pharmaceuticals. The number of applications of HPLC in peptide and protein purification continues to expand at an extremely rapid rate. Solid-phase peptide synthesis and recombinant DNA techniques have allowed the production of large quantities of peptides and proteins that need to be highly purified. HPLC techniques are also used extensively in the isolation and characterization of novel proteins that will become increasingly important in the postgenomic age. The design of multidimensional purification schemes to achieve high levels of product purity further demonstrates the power of HPLC techniques not only in the characterization of cellular events, but also in the production of pepti- and protein-based therapeutics. HPLC continues to be at the heart of the analytical techniques with which scientists in both academia and in industry must arm themselves to be able to fully characterize the identity, purity, and potency of peptides and proteins.
This text is suitable for advanced undergraduate and beginning graduate students in chemistry and biochemistry studying amino acids and peptides. The authors concentrate on amino acids and peptides without detailed discussions of proteins, although the book gives all the essential background chemistry, including sequence determination, synthesis and spectroscopic methods, to enable the reader to appreciate protein behaviour at the molecular level. The approach is intended to encourage the reader to cross classical boundaries, as in the later chapters on the biological roles of amino acids and the design of peptide-based drugs. For example, there is a section on the enzyme-catalysed synthesis of peptides, with suitable examples, an area often neglected in texts describing peptide synthesis. This modern text will be of value in the amino acid, peptide and protein field, to advanced undergraduates, graduate students and research workers.