Peatlands provide globally important ecosystem services through climate and water regulation or biodiversity conservation. While covering only 3% of the earth's surface, degrading peatlands are responsible for nearly a quarter of carbon emissions from the land use sector. Bringing together world-class experts from science, policy and practice to highlight and debate the importance of peatlands from an ecological, social and economic perspective, this book focuses on how peatland restoration can foster climate change mitigation. Featuring a range of global case studies, opportunities for reclamation and sustainable management are illustrated throughout against the challenges faced by conservation biologists. Written for a global audience of environmental scientists, practitioners and policy makers, as well as graduate students from natural and social sciences, this interdisciplinary book provides vital pointers towards managing peatland conservation in a changing environment.
Peatlands provide globally important ecosystem services through climate and water regulation or biodiversity conservation. While covering only 3% of the earth's surface, degrading peatlands are responsible for nearly a quarter of carbon emissions from the land use sector. Bringing together world-class experts from science, policy and practice to highlight and debate the importance of peatlands from an ecological, social and economic perspective, this book focuses on how peatland restoration can foster climate change mitigation. Featuring a range of global case studies, opportunities for reclamation and sustainable management are illustrated throughout against the challenges faced by conservation biologists. Written for a global audience of environmental scientists, practitioners and policy makers, as well as graduate students from natural and social sciences, this interdisciplinary book provides vital pointers towards managing peatland conservation in a changing environment.
This book provides an introduction to peatlands for the non-specialist student reader and for all those concerned about environmental protection, and is an essential guide to peatland history and heritage for scientists and enthusiasts. Peat is formed when vegetation partially decays in a waterlogged environment and occurs extensively throughout both temperate and tropical regions. Interest in peatlands is currently high due to the degradation of global peatlands which is disrupting hydrology and contributing to greenhouse gas emissions. This book opens by explaining how peat is formed, its properties and worldwide distribution, and defines related terms such as mires, wetlands, bogs and marshes. There is discussion of the ecology and wildlife of peatlands as well as their ability to preserve pollen and organic remains as environmental archives. It also addresses the history, heritage and cultural exploitation of peat, extending back to pre-Roman times, and the degradation of peatlands over the centuries, particularly as a source of fuel but more recently for commercial horticulture. Other chapters discuss the ecosystem services delivered by peatlands, and how their destruction is contributing to biodiversity loss, flooding or drought, and climate change. Finally, the many current peatland restoration projects around the world are highlighted. Overall the book provides a wide-ranging but concise overview of peatlands from both a natural and social science perspective, and will be invaluable for students of ecology, geography, environmental studies and history.
Addressing policy related issues, providing up-to-date scientific background information and laying out pressing land management questions, this interdisciplinary volume identifies and discusses key directions of environmental change in uplands, as well as providing an outlook into future management and conservation options responding to these changes.
"Drained peatlands account for only 0.3% of the global land area. At the same time, drained peatlands are the source of a disproportional 6% of total anthropogenic CO2-emissions; a problem that needs to be addressed. The 'hotspots' are well known: Southeast Asia, Central and Eastern Europe, parts of the United States and Northeast China. The solution is obvious: Restore high water levels in peatlands. But many questions remain. How does rewetting affect greenhouse gas fluxes? What about methane? Are the emissions measurable, reportable and verifiable? Are emission reductions from peatland rewetting creditable towards Kyoto Protocol commitments? Can they be sold on the voluntary carbon market? How does rewetting influence biodiversity? And, may rewetted peatlands still be used productively? Belarus ranks 8th among the world's countries in terms of peatland CO2 emissions and occupies 3rd place in CO2-emissions per unit land area. In recent years, tens of thousands of hectares of drained peatlands in Belarus have been rewetted. This volume provides a synthesis of the challenges encountered and solutions adopted in a pilot project conducted in Belarus between 2008 and 2011. It presents data and conclusions from the project and relates basic principles to advanced applications, integrating science and politics, ecology and economy. The experiences and recommendations for peatland restoration set forth in this volume will inspire practitioners, land-use planners, scientists and politicians alike."--Publisher's description.
This is the first truly ecosystem-oriented book on peatlands. It adopts an ecosystems approach to understanding the world's boreal peatlands. The focus is on biogeochemical patterns and processes, production, decomposition, and peat accumulation, and it provides additional information on animal and fungal diversity. A recurring theme is the legacy of boreal peatlands as impressive accumulators of carbon as peat over millennia.
Explores how the management of wetlands can influence carbon storage and fluxes. Wetlands are vital natural assets, including their ability to take-up atmospheric carbon and restrict subsequent carbon loss to facilitate long-term storage. They can be deliberately managed to provide a natural solution to mitigate climate change, as well as to help offset direct losses of wetlands from various land-use changes and natural drivers. Wetland Carbon and Environmental Management presents a collection of wetland research studies from around the world to demonstrate how environmental management can improve carbon sequestration while enhancing wetland health and function. Volume highlights include: Overview of carbon storage in the landscape Introduction to wetland management practices Comparisons of natural, managed, and converted wetlands Impact of wetland management on carbon storage or loss Techniques for scientific assessment of wetland carbon processes Case studies covering tropical, coastal, inland, and northern wetlands Primer for carbon offset trading programs and how wetlands might contribute The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity.Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.