Pattern Classification

Pattern Classification

Author: Shigeo Abe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 332

ISBN-13: 1447102851

DOWNLOAD EBOOK

This book provides a unified approach for developing a fuzzy classifier and explains the advantages and disadvantages of different classifiers through extensive performance evaluation of real data sets. It thus offers new learning paradigms for analyzing neural networks and fuzzy systems, while training fuzzy classifiers. Function approximation is also treated and function approximators are compared.


Pattern Recognition with Support Vector Machines

Pattern Recognition with Support Vector Machines

Author: Seong-Whan Lee

Publisher: Springer

Published: 2003-08-02

Total Pages: 433

ISBN-13: 3540456651

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Workshop on Pattern Recognition with Support Vector Machines, SVM 2002, held in Niagara Falls, Canada in August 2002.The 16 revised full papers and 14 poster papers presented together with two invited contributions were carefully reviewed and selected from 57 full paper submissions. The papers presented span the whole range of topics in pattern recognition with support vector machines from computational theories to implementations and applications.


Support Vector Machines Applications

Support Vector Machines Applications

Author: Yunqian Ma

Publisher: Springer Science & Business Media

Published: 2014-02-12

Total Pages: 306

ISBN-13: 3319023004

DOWNLOAD EBOOK

Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.


Learning to Classify Text Using Support Vector Machines

Learning to Classify Text Using Support Vector Machines

Author: Thorsten Joachims

Publisher: Springer Science & Business Media

Published: 2002-04-30

Total Pages: 228

ISBN-13: 079237679X

DOWNLOAD EBOOK

Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.


Twin Support Vector Machines

Twin Support Vector Machines

Author: Jayadeva

Publisher: Springer

Published: 2016-10-12

Total Pages: 221

ISBN-13: 3319461869

DOWNLOAD EBOOK

This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.


Support Vector Machines for Pattern Classification

Support Vector Machines for Pattern Classification

Author: Shigeo Abe

Publisher: Springer Science & Business Media

Published: 2010-07-23

Total Pages: 486

ISBN-13: 1849960984

DOWNLOAD EBOOK

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.


Support Vector Machines and Perceptrons

Support Vector Machines and Perceptrons

Author: M.N. Murty

Publisher: Springer

Published: 2016-08-16

Total Pages: 103

ISBN-13: 3319410636

DOWNLOAD EBOOK

This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>


Learning with Kernels

Learning with Kernels

Author: Bernhard Scholkopf

Publisher: MIT Press

Published: 2018-06-05

Total Pages: 645

ISBN-13: 0262536579

DOWNLOAD EBOOK

A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.


Least Squares Support Vector Machines

Least Squares Support Vector Machines

Author: Johan A. K. Suykens

Publisher: World Scientific

Published: 2002

Total Pages: 318

ISBN-13: 9789812381514

DOWNLOAD EBOOK

This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples.