Pattern Recognition Applications in Engineering

Pattern Recognition Applications in Engineering

Author: Burgos, Diego Alexander Tibaduiza

Publisher: IGI Global

Published: 2019-12-27

Total Pages: 357

ISBN-13: 1799818411

DOWNLOAD EBOOK

The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students.


Syntactic Pattern Recognition, Applications

Syntactic Pattern Recognition, Applications

Author: K.S. Fu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 278

ISBN-13: 3642664385

DOWNLOAD EBOOK

The many different mathematical techniques used to solve pattem recognition problems may be grouped into two general approaches: the decision-theoretic (or discriminant) approach and the syntactic (or structural) approach. In the decision-theoretic approach, aset of characteristic measurements, called features, are extracted from the pattems. Each pattem is represented by a feature vector, and the recognition of each pattem is usually made by partitioning the feature space. Applications of decision-theoretic approach indude character recognition, medical diagnosis, remote sensing, reliability and socio-economics. A relatively new approach is the syntactic approach. In the syntactic approach, ea ch pattem is expressed in terms of a composition of its components. The recognition of a pattem is usually made by analyzing the pattem structure according to a given set of rules. Earlier applications of the syntactic approach indude chromosome dassification, English character recognition and identification of bubble and spark chamber events. The purpose of this monograph is to provide a summary of the major reeent applications of syntactic pattem recognition. After a brief introduction of syntactic pattem recognition in Chapter 1, the nin e mai n chapters (Chapters 2-10) can be divided into three parts. The first three chapters concem with the analysis of waveforms using syntactic methods. Specific application examples indude peak detection and interpretation of electro cardiograms and the recognition of speech pattems. The next five chapters deal with the syntactic recognition of two-dimensional pictorial pattems.


Pattern Recognition

Pattern Recognition

Author: J.P. Marques de Sá

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 331

ISBN-13: 3642566510

DOWNLOAD EBOOK

The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.


Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications

Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications

Author: Robert P W Duin

Publisher: World Scientific

Published: 2005-11-22

Total Pages: 634

ISBN-13: 9814479144

DOWNLOAD EBOOK

This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.


Markov Models for Pattern Recognition

Markov Models for Pattern Recognition

Author: Gernot A. Fink

Publisher: Springer Science & Business Media

Published: 2014-01-14

Total Pages: 275

ISBN-13: 1447163087

DOWNLOAD EBOOK

This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.


Pattern Recognition Applications and Methods

Pattern Recognition Applications and Methods

Author: Ana Fred

Publisher: Springer

Published: 2017-02-03

Total Pages: 0

ISBN-13: 9783319533742

DOWNLOAD EBOOK

This book contains revised and extended versions of selected papers from the 5th International Conference on Pattern Recognition, ICPRAM 2016, held in Rome, Italy, in February 2016. The 13 full papers were carefully reviewed and selected from 125 initial submissions and describe up-to-date applications of pattern recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance pattern recognition methods.


Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Author: Chi Hau Chen

Publisher: World Scientific

Published: 1999-03-12

Total Pages: 1045

ISBN-13: 9814497649

DOWNLOAD EBOOK

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.


Syntactic and Structural Pattern Recognition

Syntactic and Structural Pattern Recognition

Author: Horst Bunke

Publisher: World Scientific

Published: 1990

Total Pages: 568

ISBN-13: 9789971505660

DOWNLOAD EBOOK

This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.


Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

Author: Alvaro Pardo

Publisher: Springer

Published: 2015-10-24

Total Pages: 795

ISBN-13: 331925751X

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.


Pattern Recognition Applications and Methods

Pattern Recognition Applications and Methods

Author: Maria De Marsico

Publisher: Springer Nature

Published: 2020-01-24

Total Pages: 170

ISBN-13: 303040014X

DOWNLOAD EBOOK

This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.