A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB, Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the i
Grids, P2P and Services Computing, the 12th volume of the CoreGRID series, is based on the CoreGrid ERCIM Working Group Workshop on Grids, P2P and Service Computing in Conjunction with EuroPar 2009. The workshop will take place August 24th, 2009 in Delft, The Netherlands. Grids, P2P and Services Computing, an edited volume contributed by well-established researchers worldwide, will focus on solving research challenges for Grid and P2P technologies. Topics of interest include: Service Level Agreement, Data & Knowledge Management, Scheduling, Trust and Security, Network Monitoring and more. Grids are a crucial enabling technology for scientific and industrial development. This book also includes new challenges related to service-oriented infrastructures. Grids, P2P and Services Computing is designed for a professional audience composed of researchers and practitioners within the Grid community industry. This volume is also suitable for advanced-level students in computer science.
This volume of the Springer Lecture Notes in Computer Science series contains the contributions presented at the International Symposium on Knowledge Exploration in Life Science Informatics (KELSI 2004) held in Milan, Italy, 25-26 November 2004. The two main objectives of the symposium were: • To explore the symbiosis between information and knowledge technologies and v- ious life science disciplines, such as biochemistry, biology, neuroscience, medical research, social sciences, and so on. • To investigate the synergy among different life science informatics areas, including cheminformatics,bioinformatics,neuroinformatics,medical informatics,systems - ology, socionics, and others. Modern life sciences investigate phenomena and systems at the level of molecules, cells, tissues, organisms, and populations. Typical areas of interest include natural e- lution, development,disease, behavior,cognition,and consciousness.This quest is g- eratinganoverwhelmingandfast-growingamountofdata,information,andknowledge, re?ecting living systems at different levels of organization. Future progress of the life sciences will depend on effective and ef?cient management, sharing, and exploitation of these resources by computational means.
The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Introduction to Mechanism Design: with Computer Applications provides an updated approach to undergraduate Mechanism Design and Kinematics courses/modules for engineering students. The use of web-based simulations, solid modeling, and software such as MATLAB and Excel is employed to link the design process with the latest software tools for the design and analysis of mechanisms and machines. While a mechanical engineer might brainstorm with a pencil and sketch pad, the final result is developed and communicated through CAD and computational visualizations. This modern approach to mechanical design processes has not been fully integrated in most books, as it is in this new text.