In this book, leading researchers in theoretical and experimental particle physics summarize the recent developments in their areas of expertise. There are also concentrated presentations on top quark discoveries and new theory consequences of top data.
Intended for graduate students, advanced undergraduates and research staff in particle physics and related disciplines and will also be of interest to physicists not working in this field who want an overview of the present development of the subject.
Quantum field theory (QFT) provides the framework for many fundamental theories in modern physics, and over the last few years there has been growing interest in its historical and philosophical foundations. This anthology on the foundations of QFT brings together 15 essays by well-known researchers in physics, the philosophy of physics, and analytic philosophy.Many of these essays were first presented as papers at the conference “Ontological Aspects of Quantum Field Theory”, held at the Zentrum für interdisziplinäre Forschung (ZiF), Bielefeld, Germany. The essays contain cutting-edge work on ontological aspects of QFT, including: the role of measurement and experimental evidence, corpuscular versus field-theoretic interpretations of QFT, the interpretation of gauge symmetry, and localization.This book is ideally suited to anyone with an interest in the foundations of quantum physics, including physicists, philosophers and historians of physics, as well as general readers interested in philosophy or science.
Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.
This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It can be used equally well as a self-study book, a reference and a textbook.
This volume contains the greater part of the papers submitted to the High Energy Physics portion of the 1983 Orbis Scientiae, then dedicated to the eightieth year of Professor P. A. M. Dirac. Before the vol,ume could be published, Professor Dirac passed away on October 20, 1984, thereby changing the dedication of this volume, and its companion, on Information Processing in Biology, to his everlasting memory. Since 1969, Professor Dirac had given the opening address at each of these conferences. He was unable to prepare a manuscript of his last paper in 1983. His impact on science already has been enormous. The consequences of his thought and work for future developments are incalculable. Regrettably, Professor Dirac's last appearance at this series of conferences, begun in 1964 as the Coral Gables Conference on Symmetry Principles at High Energy, coincided with the twentieth, and the last of these. The work and expense involved in organizing them and preparing the proceedings have corne to far exceed the physical capabilities and the support received by the Center for Theoretical Studies for this program. The delayed appearance of these proceedings, for which the editors humbly apologize, is a manifestation of the inadequate support. On the other hand, the organizers and editors thank the many distinguished participants who, over the years, made these meetings exciting and productive arenas for the dissemination of ideas in high energy physics and related fields.