A comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers soft hadron—hadron scattering in a complete and mature presentation. It can be used as a textbook in particle physics classes. Chapters 8-11 address graduate students as well as researchers, covering the "new diffraction": the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes.
Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors.
Vladimir Gribov was one of the founding fathers of high-energy elementary particle physics. This volume derives from a graduate lecture course he delivered in the 1970s. It provides graduate students and researchers with the opportunity to learn from the teaching of one of the twentieth century's greatest physicists. Its content is still deeply relevant to modern research, for example exploring properties of the relativistic theory of hadron interactions in a domain of peripheral collisions and large distances that quantum chromodynamics has barely approached. In guiding the reader step-by-step from the basics of quantum mechanics and relativistic kinematics to the most challenging problems of high-energy hadron interactions with simplifying models and physical analogies, it demonstrates general methods of addressing difficult problems in theoretical physics. Covering a combination of topics not treated elsewhere, this 2008 title has been reissued as an Open Access publication on Cambridge Core.
This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.
I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.
The Summer Institute on High Energy Physics was the second of this kind organized at Louvain. Four years ago we had already decided to organize a Summer Institute. The first one was con ceived in 1970, at Kiev, by D. Speiser, J. Weyers, and G. Zweig, and thanks to a NATO grant took place from August 20th to Septem ber 15th 1971, at Louvain in the Groot Begijnhof. All lectures were directed toward one subject: duality. The lecturers were R. Brout (ULB - Bruxelles), D. Fairlie (University of Durham), F. Gilman (SLAC - Stanford), D. Horn (University of Tel Aviv), J. Mandula (Caltech - Pasadena), C. Michael (CERN - Geneva), J. Rosner (University of Minnesota), C. Schmidt (CERN - Geneva), J. Veneziano (The Weizmann Institute), J. Weyers (UCL - Louvain and CERN - Geneva), and G. Zweig (Caltech - Pasadena). The direc tion was in the hands of F. Cerulus (KUL - Louvain), R. Rodenberg (Technische Hochschule, Aachen), D. Speiser (UCL - Louvain), and J. Weyers (CERN - Geneva). Unfortunately it was not possible to publish the lecture notes for that Institute. The second Summer Institute on Elementary Particle Physics took place from August 12th to August 25th 1973, again in Louvain. It was initiated in Chicago, in 1972, by F. Halzen (University of Wisconsin) and J. Weyers (UCL - Louvain and CERN - Geneva). Lecturers included R. Carlitz (University of Chicago), F. Gilman (SLAC - Stanford), F. Halzen (University of Wisconsin), D.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.