Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Elliptic Differential Equations

Elliptic Differential Equations

Author: W. Hackbusch

Publisher: Springer Science & Business Media

Published: 1992

Total Pages: 334

ISBN-13: 9783540548225

DOWNLOAD EBOOK

Derived from a lecture series for college mathematics students, introduces the methods of dealing with elliptical boundary-value problems--both the theory and the numerical analysis. Includes exercises. Translated and somewhat expanded from the 1987 German version. Annotation copyright by Book News, Inc., Portland, OR


Partial Differential Equations

Partial Differential Equations

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 1996-06-25

Total Pages: 590

ISBN-13: 9780387946542

DOWNLOAD EBOOK

This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations. Companion texts, which take the theory of partial differential equations further, are AMS volume 116, treating more advanced topics in linear PDE, and AMS volume 117, treating problems in nonlinear PDE. This book is addressed to graduate students in mathematics and to professional mathematicians, with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.


Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)

Author: Kari Astala

Publisher: Princeton University Press

Published: 2009-01-18

Total Pages: 708

ISBN-13: 9780691137773

DOWNLOAD EBOOK

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.


Elliptic and Parabolic Equations with Discontinuous Coefficients

Elliptic and Parabolic Equations with Discontinuous Coefficients

Author: Antonino Maugeri

Publisher: Wiley-VCH

Published: 2000-12-13

Total Pages: 266

ISBN-13:

DOWNLOAD EBOOK

This book unifies the different approaches in studying elliptic and parabolic partial differential equations with discontinuous coefficients. To the enlarging market of researchers in applied sciences, mathematics and physics, it gives concrete answers to questions suggested by non-linear models. Providing an up-to date survey on the results concerning elliptic and parabolic operators on a high level, the authors serve the reader in doing further research. Being themselves active researchers in the field, the authors describe both on the level of good examples and precise analysis, the crucial role played by such requirements on the coefficients as the Cordes condition, Campanato's nearness condition, and vanishing mean oscillation condition. They present the newest results on the basic boundary value problems for operators with VMO coefficients and non-linear operators with discontinuous coefficients and state a lot of open problems in the field.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Handbook of Differential Equations: Stationary Partial Differential Equations

Handbook of Differential Equations: Stationary Partial Differential Equations

Author: Michel Chipot

Publisher: Elsevier

Published: 2007-05-03

Total Pages: 627

ISBN-13: 0080521835

DOWNLOAD EBOOK

A collection of self contained state-of-the art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching.- written by well-known experts in the field- self contained volume in series covering one of the most rapid developing topics in mathematics


Methods for Partial Differential Equations

Methods for Partial Differential Equations

Author: Marcelo R. Ebert

Publisher: Birkhäuser

Published: 2018-02-23

Total Pages: 473

ISBN-13: 3319664565

DOWNLOAD EBOOK

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.


Elliptic Partial Differential Equations

Elliptic Partial Differential Equations

Author: Lucio Boccardo

Publisher: Walter de Gruyter

Published: 2013-10-29

Total Pages: 204

ISBN-13: 3110315424

DOWNLOAD EBOOK

Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.