Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers

Author: Tyn Myint-U

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 790

ISBN-13: 0817645608

DOWNLOAD EBOOK

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.


Handbook of Linear Partial Differential Equations for Engineers and Scientists

Handbook of Linear Partial Differential Equations for Engineers and Scientists

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2001-11-28

Total Pages: 800

ISBN-13: 1420035320

DOWNLOAD EBOOK

Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with


Partial Differential Equations for Engineers and Scientists

Partial Differential Equations for Engineers and Scientists

Author: J. N. Sharma

Publisher: Alpha Science International, Limited

Published: 2009

Total Pages: 362

ISBN-13:

DOWNLOAD EBOOK

Partial Differential Equations for Engineers and Scientists presents various well known mathematical techniques such as variable of separable method, integral transform techniques and Green's functions method, integral equations and numerical solutions to solve a number of mathematical problems. This comprehensive and compact text book, primarily designed for advanced undergraduate and postgraduate students in mathematics, physics and engineering is enriched with solved examples and supplemented with a variety of exercises at the end of each chapter. The knowledge of advanced calculus, Fourier series and some understanding about ordinary differential equations, finite differences as well as special functions are the prerequisites for the book. Senior undergraduate and postgraduate students offering courses in partial differential equations, researchers, scientists and engineers working in RD organisations would find the book to be most useful.


Solution Manual for Partial Differential Equations for Scientists and Engineers

Solution Manual for Partial Differential Equations for Scientists and Engineers

Author: Stanley J. Farlow

Publisher: Courier Dover Publications

Published: 2020-07-15

Total Pages: 304

ISBN-13: 0486842525

DOWNLOAD EBOOK

Originally published by John Wiley and Sons in 1983, Partial Differential Equations for Scientists and Engineers was reprinted by Dover in 1993. Written for advanced undergraduates in mathematics, the widely used and extremely successful text covers diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Dover's 1993 edition, which contains answers to selected problems, is now supplemented by this complete solutions manual.


Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

Author: Leon Lapidus

Publisher: John Wiley & Sons

Published: 2011-02-14

Total Pages: 677

ISBN-13: 1118031210

DOWNLOAD EBOOK

From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.


Numerical Partial Differential Equations for Environmental Scientists and Engineers

Numerical Partial Differential Equations for Environmental Scientists and Engineers

Author: Daniel R. Lynch

Publisher: Springer Science & Business Media

Published: 2006-06-02

Total Pages: 390

ISBN-13: 0387236201

DOWNLOAD EBOOK

For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.


Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Author: Kuzman Adzievski

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 645

ISBN-13: 1466510579

DOWNLOAD EBOOK

With special emphasis on engineering and science applications, this textbook provides a mathematical introduction to the field of partial differential equations (PDEs). The text represents a new approach to PDEs at the undergraduate level by presenting computation as an integral part of the study of differential equations. The authors use the computer software Mathematica (R) along with graphics to improve understanding and interpretation of concepts. The book also presents solutions to selected examples as well as exercises in each chapter. Topics include Laplace and Fourier transforms as well as Sturm-Liuville Boundary Value Problems.


Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers

Author: Lokenath Debnath

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 602

ISBN-13: 1489928464

DOWNLOAD EBOOK

This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.


Differential Equations and Group Methods for Scientists and Engineers

Differential Equations and Group Methods for Scientists and Engineers

Author: James M. Hill

Publisher: CRC Press

Published: 1992-03-17

Total Pages: 232

ISBN-13: 9780849344428

DOWNLOAD EBOOK

Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.


Numerical Methods for Solving Partial Differential Equations

Numerical Methods for Solving Partial Differential Equations

Author: George F. Pinder

Publisher: John Wiley & Sons

Published: 2018-02-05

Total Pages: 414

ISBN-13: 1119316383

DOWNLOAD EBOOK

A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.