Parsing Schemata for Practical Text Analysis

Parsing Schemata for Practical Text Analysis

Author: Carlos Gómez Rodríguez

Publisher: World Scientific

Published: 2010

Total Pages: 290

ISBN-13: 1848165617

DOWNLOAD EBOOK

The book presents a wide range of recent research results about parsing schemata, introducing formal frameworks and theoretical results while keeping a constant focus on applicability to practical parsing problems. The first part includes a general introduction to the parsing schemata formalism that contains the basic notions needed to understand the rest of the parts. Thus, this compendium can be used as an introduction to natural language parsing, allowing postgraduate students not only to get a solid grasp of the fundamental concepts underlying parsing algorithms, but also an understanding of the latest developments and challenges in the field. Researchers in computational linguistics will find novel results where parsing schemata are applied to current problems that are being actively researched in the computational linguistics community (like dependency parsing, robust parsing, or the treatment of non-projective linguistics phenomena). This book not only explains these results in a more detailed, comprehensive and self-contained way, and highlights the relations between them, but also includes new contributions that have not been presented.


Parsing Schemata for Practical Text Analysis

Parsing Schemata for Practical Text Analysis

Author: Carlos G¢mez Rodr¡guez

Publisher: World Scientific

Published: 2010

Total Pages: 290

ISBN-13: 1848165609

DOWNLOAD EBOOK

The book presents a wide range of recent research results about parsing schemata, introducing formal frameworks and theoretical results while keeping a constant focus on applicability to practical parsing problems. The first part includes a general introduction to the parsing schemata formalism that contains the basic notions needed to understand the rest of the parts. Thus, this compendium can be used as an introduction to natural language parsing, allowing postgraduate students not only to get a solid grasp of the fundamental concepts underlying parsing algorithms, but also an understanding of the latest developments and challenges in the field. Researchers in computational linguistics will find novel results where parsing schemata are applied to current problems that are being actively researched in the computational linguistics community (like dependency parsing, robust parsing, or the treatment of non-projective linguistics phenomena). This book not only explains these results in a more detailed, comprehensive and self-contained way, and highlights the relations between them, but also includes new contributions that have not been presented.


Text Analytics with Python

Text Analytics with Python

Author: Dipanjan Sarkar

Publisher: Apress

Published: 2016-11-30

Total Pages: 397

ISBN-13: 1484223888

DOWNLOAD EBOOK

Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data


Parsing Techniques

Parsing Techniques

Author: Dick Grune

Publisher: Springer Science & Business Media

Published: 2007-10-29

Total Pages: 677

ISBN-13: 0387689540

DOWNLOAD EBOOK

This second edition of Grune and Jacobs’ brilliant work presents new developments and discoveries that have been made in the field. Parsing, also referred to as syntax analysis, has been and continues to be an essential part of computer science and linguistics. Parsing techniques have grown considerably in importance, both in computer science, ie. advanced compilers often use general CF parsers, and computational linguistics where such parsers are the only option. They are used in a variety of software products including Web browsers, interpreters in computer devices, and data compression programs; and they are used extensively in linguistics.


The Oxford Handbook of Computational Linguistics

The Oxford Handbook of Computational Linguistics

Author: Ruslan Mitkov

Publisher: Oxford University Press

Published: 2004

Total Pages: 808

ISBN-13: 019927634X

DOWNLOAD EBOOK

This handbook of computational linguistics, written for academics, graduate students and researchers, provides a state-of-the-art reference to one of the most active and productive fields in linguistics.


Natural Language Processing and Text Mining

Natural Language Processing and Text Mining

Author: Anne Kao

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 272

ISBN-13: 1846287545

DOWNLOAD EBOOK

Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.