The Paris-Princeton Lectures in Financial Mathematics, of which this is the fourth volume, publish cutting-edge research in self-contained, expository articles from outstanding specialists - established or on the rise! The aim is to produce a series of articles that can serve as an introductory reference source for research in the field. The articles are the result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with five articles by: 1. Areski Cousin, Monique Jeanblanc and Jean-Paul Laurent, 2. Stéphane Crépey, 3. Olivier Guéant, Jean-Michel Lasry and Pierre-Louis Lions, 4. David Hobson and 5. Peter Tankov.
The Paris-Princeton Lectures in Financial Mathematics, of which this is the first volume, will, on an annual basis, publish cutting-edge research in self-contained, expository articles from outstanding - established or upcoming! - specialists. The aim is to produce a series of articles that can serve as an introductory reference for research in the field. It arises as a result of frequent exchanges between the finance and financial mathematics groups in Paris and Princeton. The present volume sets standards with articles by P. Bank/H. Föllmer, F. Baudoin, L.C.G. Rogers, and M. Soner/N. Touzi.
The current volume presents four chapters touching on some of the most important and modern areas of research in Mathematical Finance: asset price bubbles (by Philip Protter); energy markets (by Fred Espen Benth); investment under transaction costs (by Paolo Guasoni and Johannes Muhle-Karbe); and numerical methods for solving stochastic equations (by Dan Crisan, K. Manolarakis and C. Nee).The Paris-Princeton Lecture Notes on Mathematical Finance, of which this is the fifth volume, publish cutting-edge research in self-contained, expository articles from renowned specialists. The aim is to produce a series of articles that can serve as an introductory reference source for research in the field.
This Gedenkschrift for Peter Carr, our dear friend and colleague who suddenly left us on March 1, 2022, was organized to honor the life and lasting contributions of Peter to Quantitative Finance. A group of Peter's co-authors and professional friends contributed chapters for this Gedenkschrift shortly after his passing. The papers were received by September 15, 2022 and some were presented at the Peter Carr Gedenkschrift Conference held at the Robert H Smith School of Business on November 11, 2022. The contributed papers cover a wide range of topics corresponding to the vast range of Peter's interests. Each paper represents new research results in recognition of Peter's scholarly activities. The book serves as an important marker for the research knowledge existing at the time of the Gedenkschrift's publication on a number of topics within quantitative finance. It reflects the diverse interactions between mathematics and finance and illustrates, for those interested, the breadth and depth of this development. The book also presents a collection of tributes to Peter from family and friends including those made at his Memorial Service on March 19, 2022. The result is hopefully a more complete testament to a personal and professional life well lived, and unexpectedly cut short.
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
This volume is based on lectures delivered at the 2020 AMS Short Course “Mean Field Games: Agent Based Models to Nash Equilibria,” held January 13–14, 2020, in Denver, Colorado. Mean field game theory offers a robust methodology for studying large systems of interacting rational agents. It has been extraordinarily successful and has continued to develop since its inception. The six chapters that make up this volume provide an overview of the subject, from the foundations of the theory to applications in economics and finance, including computational aspects. The reader will find a pedagogical introduction to the main ingredients, from the forward-backward mean field game system to the master equation. Also included are two detailed chapters on the connection between finite games and mean field games, with a pedestrian description of the different methods available to solve the convergence problem. The volume concludes with two contributions on applications of mean field games and on existing numerical methods, with an opening to machine learning techniques.
Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.
Solve the DVA/FVA Overlap Issue and Effectively Manage Portfolio Credit Risk Counterparty Risk and Funding: A Tale of Two Puzzles explains how to study risk embedded in financial transactions between the bank and its counterparty. The authors provide an analytical basis for the quantitative methodology of dynamic valuation, mitigation, and hedging of bilateral counterparty risk on over-the-counter (OTC) derivative contracts under funding constraints. They explore credit, debt, funding, liquidity, and rating valuation adjustment (CVA, DVA, FVA, LVA, and RVA) as well as replacement cost (RC), wrong-way risk, multiple funding curves, and collateral. The first part of the book assesses today’s financial landscape, including the current multi-curve reality of financial markets. In mathematical but model-free terms, the second part describes all the basic elements of the pricing and hedging framework. Taking a more practical slant, the third part introduces a reduced-form modeling approach in which the risk of default of the two parties only shows up through their default intensities. The fourth part addresses counterparty risk on credit derivatives through dynamic copula models. In the fifth part, the authors present a credit migrations model that allows you to account for rating-dependent credit support annex (CSA) clauses. They also touch on nonlinear FVA computations in credit portfolio models. The final part covers classical tools from stochastic analysis and gives a brief introduction to the theory of Markov copulas. The credit crisis and ongoing European sovereign debt crisis have shown the importance of the proper assessment and management of counterparty risk. This book focuses on the interaction and possible overlap between DVA and FVA terms. It also explores the particularly challenging issue of counterparty risk in portfolio credit modeling. Primarily for researchers and graduate students in financial mathematics, the book is also suitable for financial quants, managers in banks, CVA desks, and members of supervisory bodies.
This volume covers selected topics addressed and discussed during the workshop “PDE models for multi-agent phenomena,” which was held in Rome, Italy, from November 28th to December 2nd, 2016. The content mainly focuses on kinetic equations and mean field games, which provide a solid framework for the description of multi-agent phenomena. The book includes original contributions on the theoretical and numerical study of the MFG system: the uniqueness issue and finite difference methods for the MFG system, MFG with state constraints, and application of MFG to market competition. The book also presents new contributions on the analysis and numerical approximation of the Fokker-Planck-Kolmogorov equations, the isotropic Landau model, the dynamical approach to the quantization problem and the asymptotic methods for fully nonlinear elliptic equations. Chiefly intended for researchers interested in the mathematical modeling of collective phenomena, the book provides an essential overview of recent advances in the field and outlines future research directions.