Parameter Transient Behavior Analysis on Fault Tolerant Control System

Parameter Transient Behavior Analysis on Fault Tolerant Control System

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-06-21

Total Pages: 24

ISBN-13: 9781721657537

DOWNLOAD EBOOK

In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function. Belcastro, Christine (Technical Monitor) and Shin, Jong-Yeob Langley Research Center NASA/CR-2003-212682, NIA-2003-05


Analysis and Synthesis of Fault-Tolerant Control Systems

Analysis and Synthesis of Fault-Tolerant Control Systems

Author: Magdi S. Mahmoud

Publisher: John Wiley & Sons

Published: 2013-10-28

Total Pages: 451

ISBN-13: 111870035X

DOWNLOAD EBOOK

In recent years, control systems have become more sophisticated in order to meet increased performance and safety requirements for modern technological systems. Engineers are becoming more aware that conventional feedback control design for a complex system may result in unsatisfactory performance, or even instability, in the event of malfunctions in actuators, sensors or other system components. In order to circumvent such weaknesses, new approaches to control system design have emerged which can tolerate component malfunctions while maintaining acceptable stability and performance. These types of control systems are often known as fault-tolerant control systems (FTCS). More precisely, FTCS are control systems which possess the ability to accommodate component failure automatically. Analysis and Synthesis of Fault-Tolerant Control Systems comprehensively covers the analysis and synthesis methods of fault tolerant control systems. It unifies the methods for developing controllers and filters for a wide class of dynamical systems and reports on the recent technical advances in design methodologies. MATLAB® is used throughout the book, to demonstrate methods of analysis and design. Key features: • Provides advanced theoretical methods and typical practical applications • Provides access to a spectrum of control design methods applied to industrial systems • Includes case studies and illustrative examples • Contains end-of-chapter problems Analysis and Synthesis of Fault-Tolerant Control Systems is a comprehensive reference for researchers and practitioners working in this area, and is also a valuable source of information for graduates and senior undergraduates in control, mechanical, aerospace, electrical and mechatronics engineering departments.


Fault Detection, Supervision and Safety of Technical Processes 2006

Fault Detection, Supervision and Safety of Technical Processes 2006

Author: Hong-Yue Zhang

Publisher: Elsevier

Published: 2007-03-01

Total Pages: 1576

ISBN-13: 9780080555393

DOWNLOAD EBOOK

The safe and reliable operation of technical systems is of great significance for the protection of human life and health, the environment, and of the vested economic value. The correct functioning of those systems has a profound impact also on production cost and product quality. The early detection of faults is critical in avoiding performance degradation and damage to the machinery or human life. Accurate diagnosis then helps to make the right decisions on emergency actions and repairs. Fault detection and diagnosis (FDD) has developed into a major area of research, at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and such application fields as chemical, electrical, mechanical and aerospace engineering. IFAC has recognized the significance of FDD by launching a triennial symposium series dedicated to the subject. The SAFEPROCESS Symposium is organized every three years since the first symposium held in Baden-Baden in 1991. SAFEPROCESS 2006, the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes was held in Beijing, PR China. The program included three plenary papers, two semi-plenary papers, two industrial talks by internationally recognized experts and 258 regular papers, which have been selected out of a total of 387 regular and invited papers submitted. * Discusses the developments and future challenges in all aspects of fault diagnosis and fault tolerant control * 8 invited and 36 contributed sessions included with a special session on the demonstration of process monitoring and diagnostic software tools


Control of Linear Parameter Varying Systems with Applications

Control of Linear Parameter Varying Systems with Applications

Author: Javad Mohammadpour

Publisher: Springer Science & Business Media

Published: 2012-03-09

Total Pages: 554

ISBN-13: 1461418321

DOWNLOAD EBOOK

Control of Linear Parameter Varying Systems compiles state-of-the-art contributions on novel analytical and computational methods for addressing system identification, model reduction, performance analysis and feedback control design and addresses address theoretical developments, novel computational approaches and illustrative applications to various fields. Part I discusses modeling and system identification of linear parameter varying systems, Part II covers the importance of analysis and control design when working with linear parameter varying systems (LPVS) , Finally, Part III presents an applications based approach to linear parameter varying systems, including modeling of a turbocharged diesel engines, Multivariable control of wind turbines, modeling and control of aircraft engines, control of an autonomous underwater vehicles and analysis and synthesis of re-entry vehicles.


Control Systems, Robotics and AutomatioN – Volume XVI

Control Systems, Robotics and AutomatioN – Volume XVI

Author: Heinz D. Unbehauen

Publisher: EOLSS Publications

Published: 2009-10-11

Total Pages: 524

ISBN-13: 1848261551

DOWNLOAD EBOOK

This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.


Parameter Estimation and Adaptive Control for Nonlinear Servo Systems

Parameter Estimation and Adaptive Control for Nonlinear Servo Systems

Author: Shubo Wang

Publisher: Elsevier

Published: 2024-01-16

Total Pages: 304

ISBN-13: 0443155755

DOWNLOAD EBOOK

Parameter Estimation and Adaptive Control for Nonlinear Servo Systems presents the latest advances in observer-based control design, focusing on adaptive control for nonlinear systems such as adaptive neural network control, adaptive parameter estimation, and system identification. This book offers an array of new real-world applications in the field. Written by eminent scientists in the field of control theory, this book covers the latest advances in observer-based control design. It provides fundamentals, algorithms, and it discusses key applications in the fields of power systems, robotics and mechatronics, flight and automotive systems. - Presents a clear and concise introduction to the latest advances in parameter estimation and adaptive control with several concise applications for servo systems - Covers a wide range of applications usually not found in similar books, such as power systems, robotics, mechatronics, aeronautics, and industrial systems - Contains worked examples which make it ideal for advanced courses as well as for researchers starting to work in the field, particularly suitable for engineers wishing to enter the field quickly and efficiently


Fault-tolerant Control Systems

Fault-tolerant Control Systems

Author: Hassan Noura

Publisher: Springer Science & Business Media

Published: 2009-07-30

Total Pages: 233

ISBN-13: 1848826532

DOWNLOAD EBOOK

The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.