Parallel Processing from Applications to Systems

Parallel Processing from Applications to Systems

Author: Dan I. Moldovan

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 586

ISBN-13: 1483297519

DOWNLOAD EBOOK

This text provides one of the broadest presentations of parallel processing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mapping algorithms to highly parallel computers, with extensive coverage of array and multiprocessor architectures. Early chapters provide insightful coverage on the analysis of parallel algorithms and program transformations, effectively integrating a variety of material previously scattered throughout the literature. Theory and practice are well balanced across diverse topics in this concise presentation. For exceptional clarity and comprehension, the author presents complex material in geometric graphs as well as algebraic notation. Each chapter includes well-chosen examples, tables summarizing related key concepts and definitions, and a broad range of worked exercises. Overview of common hardware and theoretical models, including algorithm characteristics and impediments to fast performance Analysis of data dependencies and inherent parallelism through program examples, building from simple to complex Graphic and explanatory coverage of program transformations Easy-to-follow presentation of parallel processor structures and interconnection networks, including parallelizing and restructuring compilers Parallel synchronization methods and types of parallel operating systems Detailed descriptions of hypercube systems Specialized chapters on dataflow and on AI architectures


Parallel Programming

Parallel Programming

Author: Thomas Rauber

Publisher: Springer Science & Business Media

Published: 2013-06-13

Total Pages: 523

ISBN-13: 3642378013

DOWNLOAD EBOOK

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.


Parallel Programming

Parallel Programming

Author: Thomas Rauber

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 463

ISBN-13: 364204817X

DOWNLOAD EBOOK

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. The main goal of the book is to present parallel programming techniques that can be used in many situations for many application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The presented material has been used for courses in parallel programming at different universities for many years.


Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing

Author: Michael A. Heroux

Publisher: SIAM

Published: 2006-01-01

Total Pages: 421

ISBN-13: 9780898718133

DOWNLOAD EBOOK

Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.


Programming Massively Parallel Processors

Programming Massively Parallel Processors

Author: David B. Kirk

Publisher: Newnes

Published: 2012-12-31

Total Pages: 519

ISBN-13: 0123914183

DOWNLOAD EBOOK

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing


Parallel Computing Works!

Parallel Computing Works!

Author: Geoffrey C. Fox

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 1012

ISBN-13: 0080513514

DOWNLOAD EBOOK

A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.


Deep Learning and Parallel Computing Environment for Bioengineering Systems

Deep Learning and Parallel Computing Environment for Bioengineering Systems

Author: Arun Kumar Sangaiah

Publisher: Academic Press

Published: 2019-07-26

Total Pages: 280

ISBN-13: 0128172932

DOWNLOAD EBOOK

Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations’ needs as well as practitioners’ innovative ideas. Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data


Programming Models for Parallel Computing

Programming Models for Parallel Computing

Author: Pavan Balaji

Publisher: MIT Press

Published: 2015-11-06

Total Pages: 488

ISBN-13: 0262528819

DOWNLOAD EBOOK

An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng


Parallel Computational Fluid Dynamics 2006

Parallel Computational Fluid Dynamics 2006

Author: Jang-Hyuk Kwon

Publisher: Elsevier

Published: 2007-09-12

Total Pages: 320

ISBN-13: 0080550045

DOWNLOAD EBOOK

The proceedings from Parallel CFD 2006 covers all aspects of parallel computings and its applications. Although CFD is one of basic tools for design procedures to produce machineries, such as automobiles, ships, aircrafts, etc., large scale parallel computing has been realized very recently, especially for the manufactures. Various applications in many areas could be experienced including acoustics, weather prediction and ocean modeling, flow control, turbine flow, fluid-structure interaction, optimization, heat transfer, hydrodynamics. - Report on current research in the field in an area which is rapidly changing - Subject is important to all interested in solving large fluid dynamics problems - Interdisciplinary activity. Contributions include scientists with a variety of backgrounds