Initial-boundary Value Problems and the Navier-Stokes Equations

Initial-boundary Value Problems and the Navier-Stokes Equations

Author: Heinz-Otto Kreiss

Publisher: SIAM

Published: 1989-01-01

Total Pages: 408

ISBN-13: 0898719135

DOWNLOAD EBOOK

Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.


Critical Parabolic-Type Problems

Critical Parabolic-Type Problems

Author: Tomasz W. Dłotko

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-05-05

Total Pages: 217

ISBN-13: 311059868X

DOWNLOAD EBOOK

This self-contained book covers the theory of semilinear equations with sectorial operator going back to the studies of Yosida, Henry, and Pazy, which are deeply extended nowadays. The treatment emphasizes existence-uniqueness theory as a topic of functional analysis and examines abstract evolutionary equations, with applications to the Navier-Stokes system, the quasi-geostrophic equation, and fractional reaction-diffusion equations.


Moving Interfaces and Quasilinear Parabolic Evolution Equations

Moving Interfaces and Quasilinear Parabolic Evolution Equations

Author: Jan Prüss

Publisher: Birkhäuser

Published: 2016-07-25

Total Pages: 618

ISBN-13: 3319276980

DOWNLOAD EBOOK

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.


The Navier-Stokes Equations

The Navier-Stokes Equations

Author: Hermann Sohr

Publisher: Springer Science & Business Media

Published: 2012-12-13

Total Pages: 376

ISBN-13: 3034805519

DOWNLOAD EBOOK

The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.


Linear and Quasilinear Parabolic Systems: Sobolev Space Theory

Linear and Quasilinear Parabolic Systems: Sobolev Space Theory

Author: David Hoff

Publisher: American Mathematical Soc.

Published: 2020-11-18

Total Pages: 226

ISBN-13: 1470461617

DOWNLOAD EBOOK

This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiri Blazek

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 491

ISBN-13: 0080529674

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.


Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Author: Franck Boyer

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 538

ISBN-13: 1461459753

DOWNLOAD EBOOK

The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .


Navier-Stokes Equations

Navier-Stokes Equations

Author: R. Younsi

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9781613245903

DOWNLOAD EBOOK

It is well known that the Navier -- Stokes equations are one of the pillars of fluid mechanics. These equations are useful because they describe the physics of many things of academic and economic interest. They may be used to model the weather behaviour, ocean currents, water flow in a pipe and air flow around a wing. The Navier -- Stokes equations in their full and simplified forms also help with the design of train, aircraft and cars, the study of blood flow, the design of power stations and pollution analysis. This book presents contributions on the application of Navier-Stokes in some engineering applications and provides a description of how the Navier-Stokes equations can be scaled.