Dictionary Learning for Scalable Sparse Image Representation

Dictionary Learning for Scalable Sparse Image Representation

Author: Bojana Begovic

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Modern era of signal processing has developed many technical tools for recording and processing large and growing amount of data together with algorithms specialised for data analysis. This gives rise to new challenges in terms of data processing and modelling data representation. Fields ranging from experimental sciences, astronomy, computer vision,neuroscience mobile networks etc., are all in constant search for scalable and efficient data processing tools which would enable more effective analysis of continuous video streams containing millions of pixels. Therefore, the question of digital signal representation is still of high importance, despite the fact that it has been the topic of a significant amount of work in the past. Moreover, developing new data processing methods also affects the quality of everyday life, where devices such as CCD sensors from digital cameras or cell phones are intensively used for entertainment purposes. Specifically, one of the novel processing tools is signal sparse coding which represents signals as linear combinations of a few representational basis vectors i.e., atoms given an overcomplete dictionary. Applications that employ sparse representation are many such as denoising, compression, and regularisation in inverse problems, feature extraction, and more. In this thesis we introduce and study a particular signal representation denoted as the scalable sparse coding. It is based on a novel design for the dictionary learning algorithm, which has proven to be effective for scalable sparse representation of many modalities such as high motion video sequences, natural and solar images. The proposed algorithm is built upon the foundation of the K-SVD framework originally designed to learn non-scalable dictionaries for natural images. The scalable dictionary learning design is mainly motivated by the main perception characteristics of the Human Visual System (HVS) mechanism. Specifically, its core structure relies on the exploitation of the spatial high-frequency image components and contrast variations in order to achieve visual scene objects identification at all scalable levels. The implementation of HVS properties is carried out by introducing a semi-random Morphological Component Analysis (MCA) based initialisation of the scalable dictionary and the regularisation of its atom's update mechanism. Subsequently, this enables scalable sparse image reconstruction. In general, dictionary learning for sparse representations leads to state-of-the-art image restoration results for several different problems in the field of image processing. Experiments in this thesis show that these are equally achievable by accommodating all dictionary elements to tailor the scalable data representation and reconstruction, hence modelling data that admit sparse representation in a novel manner. Furthermore, achieved results demonstrateand validate the practicality of the proposed scheme making it a promising candidate for many practical applications involving both time scalable display, denoising and scalable compressive sensing (CS). Performed simulations include scalable sparse recovery for representation of static and dynamic data changing over time such as video sequences and natural images. Lastly, we contribute novel approaches for scalable denoising and contrast enhancement (CE), applied on solar images corrupted with pixel-dependent Poisson and zero-mean additive white Gaussian noise. Given that solar data contain noise introduced by charge-coupled devices within the on-board acquisition system these artefacts, prior to image analysis, have to be removed. Thus, novel image denoising and contrast enhancement methods are necessary for solar preprocessing.


Dictionary Learning in Visual Computing

Dictionary Learning in Visual Computing

Author: Qiang Zhang

Publisher: Morgan & Claypool Publishers

Published: 2015-05-01

Total Pages: 153

ISBN-13: 1627057781

DOWNLOAD EBOOK

The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensions of K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.


Selection-based Dictionary Learning for Sparse Representation in Visual Tracking

Selection-based Dictionary Learning for Sparse Representation in Visual Tracking

Author: Baiyang Liu

Publisher:

Published: 2012

Total Pages: 79

ISBN-13:

DOWNLOAD EBOOK

This dissertation describes a novel selection-based dictionary learning method with a sparse representation to tackle the object tracking problem in computer vision. The sparse representa- tion has been widely used in many applications including visual tracking, compressive sensing, image de-noising and image classification, and learning a good dictionary for the sparse rep- resentation is critical for obtaining high performance. The most popular existing dictionary learning algorithms are generalized from K-means, which compute the dictionary columns to minimize the overall target reconstruction error iteratively. For better discriminative capability to differentiate target-object (positive) from background (negative) data, a class of dictionary algorithms has been developed to learn the dictionary from both the positive and the negative data. However, these methods do not work well for visual tracking in a dynamic environment in which the background can change considerably between frames in a non-linear way. The background cannot be modeled statically with the usual linear models. In this tdissertation, I report on the development of a selection-based dictionary learning algorithm (K-Selection) that constructs the dictionary by choosing its columns from the training data. Each column is the most representative basis for the whole dataset, which also has a clear physical meaning. With locality-constraints, the subspace represented by the learned dictionary is not restricted to the training data alone, and is also less sensitive to outliers. The sparse representation based on this dictionary learning method supports a more robust tracker trained on the target-object data alone. This is because the learned dictionary has more discriminative power and can better distinguish the object from the background clutter. By extending the dictionary with encoded spatial information, I present a new tracking algorithm which is robust to dynamic appearance changes and occlusions. The performance of the proposed algorithms have been validated for several challenging visual tracking applications through a series of comparative experiments.


Processing and Analysis of Hyperspectral Data

Processing and Analysis of Hyperspectral Data

Author: Jie Chen

Publisher: BoD – Books on Demand

Published: 2020-01-22

Total Pages: 137

ISBN-13: 1789851092

DOWNLOAD EBOOK

Hyperspectral imagery has received considerable attention in the last decade as it provides rich spectral information and allows the analysis of objects that are unidentifiable by traditional imaging techniques. It has a wide range of applications, including remote sensing, industry sorting, food analysis, biomedical imaging, etc. However, in contrast to RGB images from which information can be intuitively extracted, hyperspectral data is only useful with proper processing and analysis. This book covers theoretical advances of hyperspectral image processing and applications of hyperspectral processing, including unmixing, classification, super-resolution, and quality estimation with classical and deep learning methods.


Sparse Representations for Image Classification: Learning Discriminative and Reconstructive Non-Parametric Dictionaries

Sparse Representations for Image Classification: Learning Discriminative and Reconstructive Non-Parametric Dictionaries

Author:

Publisher:

Published: 2008

Total Pages: 16

ISBN-13:

DOWNLOAD EBOOK

A framework for learning optimal dictionaries for simultaneous sparse signal representation and robust class classification is introduced in this paper. This problem for dictionary learning is solved by a class-dependent supervised simultaneous orthogonal matching pursuit, which learns the intra-class structure while increasing the inter-class discrimination, interleaved with an efficient dictionary update obtained via singular value decomposition. This framework addresses for the first time the explicit incorporation of both reconstruction and discrimination terms in the non-parametric dictionary learning and sparse coding energy. The work contributes to the understanding of the importance of learned sparse representations for signal classification, showing the relevance of learning discriminative and at the same time reconstructive dictionaries in order to achieve accurate and robust classification. The presentation of the underlying theory is complemented with examples with the standard MNIST and Caltech datasets, and results on the use of the sparse representation obtained from the learned dictionaries as local patch descriptors, replacing commonly used experimental ones.


Computer Vision -- ECCV 2014

Computer Vision -- ECCV 2014

Author: David Fleet

Publisher: Springer

Published: 2014-08-13

Total Pages: 877

ISBN-13: 3319105906

DOWNLOAD EBOOK

The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.


Computer Vision – ECCV 2016

Computer Vision – ECCV 2016

Author: Bastian Leibe

Publisher: Springer

Published: 2016-09-16

Total Pages: 910

ISBN-13: 3319464752

DOWNLOAD EBOOK

The eight-volume set comprising LNCS volumes 9905-9912 constitutes the refereed proceedings of the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The 415 revised papers presented were carefully reviewed and selected from 1480 submissions. The papers cover all aspects of computer vision and pattern recognition such as 3D computer vision; computational photography, sensing and display; face and gesture; low-level vision and image processing; motion and tracking; optimization methods; physics-based vision, photometry and shape-from-X; recognition: detection, categorization, indexing, matching; segmentation, grouping and shape representation; statistical methods and learning; video: events, activities and surveillance; applications. They are organized in topical sections on detection, recognition and retrieval; scene understanding; optimization; image and video processing; learning; action activity and tracking; 3D; and 9 poster sessions.


Robotic Tactile Perception and Understanding

Robotic Tactile Perception and Understanding

Author: Huaping Liu

Publisher: Springer

Published: 2018-03-20

Total Pages: 220

ISBN-13: 9811061718

DOWNLOAD EBOOK

This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.