A major task for physical oceanographers is to determine the movement of oceanic water from observations. This book introduces the P-vector inverse method, with a two-step determination of the velocity from hydrographic data. The book provide insights into the basics of the P-vector inverse method and the features of the inverted global and regional ocean circulations. Upper undergraduate and graduate students as well as oceanographers, marine biologists and other environmental scientists will find this book a valuable tool for their studies.
Recent advances in the power of inversion methods, the accuracy of acoustic field prediction codes, and the speed of digital computers have made the full field inversion of ocean and seismic parameters on a large scale a practical possibility. These methods exploit amplitude and phase information detected on hydrophone/geophone arrays, thereby extending traditional inversion schemes based on time of flight measurements. Full field inversion methods provide environmental information by minimising the mismatch between measured and predicted acoustic fields through a global search of possible environmental parameters. Full Field Inversion Methods in Ocean and Seismo-Acoustics is the formal record of a conference held in Italy in June 1994, sponsored by NATO SACLANT Undersea Research Centre. It includes papers by NATO specialists and others. Topics covered include: · speed and accuracy of acoustic field prediction codes · signal processing strategies · global inversion algorithms · search spaces of environmental parameters · environmental stochastic limitations · special purpose computer architectures · measurement geometries · source and receiving sensor technologies.
This book looks at how modern developments have enhanced the utility of basin analysis in hydrocarbon exploration. A major factor is modern computing power, which enables complex Monte Carlo-type calculations to be rapidly carried out; a second is the transfer of concepts from the economic arena to the theatre of hydrocarbon production, for example setting risking procedures to cope with data uncertainties. In addition now there are available powerful methods for handling the determination of parameters in the highly non-linear world of equations describing various facets of basin analysis. Th.
Inversion Methods in Atmospheric Remote Sounding contains the technical proceedings of the First International Interactive Workshop on Inversion Methods in Atmospheric Remote Sounding, held in Williamsburg, Virginia, on December 15-17, 1976. The papers review the state of the art in inversion methods used in retrieving information about the atmosphere from remotely sensed data. The mathematical theory of inversion methods is described, together with the application of these methods to the remote sounding of atmospheric temperature, relative humidity, and gaseous and aerosol constituents. Comprised of 21 chapters, this book begins with an introduction to methods for solving problems in radiative transfer and multiple scattering, followed by a discussion on the problem of radiative transfer in a scattering plane-parallel atmosphere. The next section is devoted to the mathematical theory of inversion methods and considers some aspects of the inversion problem in remote sensing, along with the relaxation method for the inverse solution of nonlinear and linear transfer equations. The final section explores inversion methods in gaseous, thermal, and aerosol atmospheres, covering topics such as the Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles; inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters; and inversion of passive microwave remote sensing data from satellites. This monograph will be of interest to scientists from universities, government agencies, and research laboratories.
This foreword deals exclusively with the planning, organization, and execution of the Workshop's scientific as well as cultural programs. It is opened with a synopsis on how the global political changes that occurred immediately after the Workshop caused the ~elay in producing the proceedings, followed by a brief exposition on need, timeliness, and importance of this second ARW in the field of electromagnetic imaging, radar remote sensing, and target versus clutter di~rimination; and an outline of the objectives. An informal discussion about some of the organizational details, a retrospective summary of events, and a preview of the third workshop, planned for 1993 September 19-25, is intended to recapture the spirit of this second NATO Advanced Research Workshop (1988 September 18-24), and will reveal how successful it was in compar ison to the first of 1983 September 18-24, how its accomplishments may be appreciated and why a third and last workshop was requested by its participants to take place during 1993 September 19-25.
A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems Written by a leading expert in the field