p-Adic Valued Distributions in Mathematical Physics

p-Adic Valued Distributions in Mathematical Physics

Author: Andrei Y. Khrennikov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 271

ISBN-13: 9401583560

DOWNLOAD EBOOK

Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I· We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo· These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.


P-adic Analysis and Mathematical Physics

P-adic Analysis and Mathematical Physics

Author: Vasili? Sergeevich Vladimirov

Publisher: World Scientific

Published: 1994

Total Pages: 350

ISBN-13: 9789810208806

DOWNLOAD EBOOK

p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.


p-Adic Valued Distributions in Mathematical Physics

p-Adic Valued Distributions in Mathematical Physics

Author: Andrei Y. Khrennikov

Publisher: Springer

Published: 1994-10-31

Total Pages: 264

ISBN-13: 0792331729

DOWNLOAD EBOOK

Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I· We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo· These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.


P-adic Deterministic and Random Dynamics

P-adic Deterministic and Random Dynamics

Author: Andrei Y. Khrennikov

Publisher: Springer Science & Business Media

Published: 2004-10-18

Total Pages: 296

ISBN-13: 9781402026591

DOWNLOAD EBOOK

This book provides an overview of the theory of p-adic (and more general non-Archimedean) dynamical systems. The main part of the book is devoted to discrete dynamical systems. It presents a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. Coverage also details p-adic neural networks and their applications to cognitive sciences: learning algorithms, memory recalling.


Noncommutative Structures in Mathematics and Physics

Noncommutative Structures in Mathematics and Physics

Author: S. Duplij

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 9401008361

DOWNLOAD EBOOK

A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.


Harmonic, Wavelet And P-adic Analysis

Harmonic, Wavelet And P-adic Analysis

Author: Yu V Egorov

Publisher: World Scientific

Published: 2007-05-14

Total Pages: 393

ISBN-13: 9814476005

DOWNLOAD EBOOK

The mutual influence between mathematics and science and technology is becoming more and more widespread with profound connections among them being discovered. In particular, important connections between harmonic analysis, wavelet analysis and p-adic analysis have been found recently.This volume reports these findings and guides the reader towards the latest areas for further research. It is divided into two parts: harmonic, wavelet and p-adic analysis and p-adic and stochastic analysis.


P-adic Analysis And Mathematical Physics

P-adic Analysis And Mathematical Physics

Author: V S Vladimirov

Publisher: World Scientific

Published: 1994-04-28

Total Pages: 342

ISBN-13: 9814505765

DOWNLOAD EBOOK

p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.


New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences

New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences

Author: Bourama Toni

Publisher: Springer

Published: 2017-07-05

Total Pages: 365

ISBN-13: 3319556126

DOWNLOAD EBOOK

The latest of five multidisciplinary volumes, this book spans the STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health) disciplines with the intent to generate meaningful interdisciplinary interaction and student interest. Emphasis is placed on important methods and applications within and beyond each field. Topics include geometric triple systems, image segmentation, pattern recognition in medicine, pricing barrier options, p-adic numbers distribution in geophysics data pattern, adelic physics, and evolutionary game theory. Contributions were by invitation only and peer-reviewed. Each chapter is reasonably self-contained and pedagogically presented for a multidisciplinary readership.


P-adic Deterministic and Random Dynamics

P-adic Deterministic and Random Dynamics

Author: Andrei Y. Khrennikov

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 279

ISBN-13: 1402026609

DOWNLOAD EBOOK

This book provides an overview of the theory of p-adic (and more general non-Archimedean) dynamical systems. The main part of the book is devoted to discrete dynamical systems. It presents a model of probabilistic thinking on p-adic mental space based on ultrametric diffusion. Coverage also details p-adic neural networks and their applications to cognitive sciences: learning algorithms, memory recalling.