This book is the first to bring together essential information on the application of ozone in food processing, providing an insight into the current state-of-the-art and reviewing established and emerging applications in food processing, preservation and waste management. The chemical and physical properties of ozone are described, along with its microbial inactivation mechanisms. The various methods of ozone production are compared, including their economic and technical aspects. Several chapters are dedicated to the major food processing applications: fruit and vegetables, grains, meat, seafood and food hydrocolloids, and the effects on nutritional and quality parameters will be reviewed throughout. Further chapters examine the role of ozone in water treatment, in food waste treatment and in deactivating pesticide residues. The international regulatory and legislative picture is addressed, as are the health and safety implications of ozone processing and possible future trends.
The problem of creating microbiologically-safe food with an acceptable shelf-life and quality for the consumer is a constant challenge for the food industry. Microbial decontamination in the food industry provides a comprehensive guide to the decontamination problems faced by the industry, and the current and emerging methods being used to solve them.Part one deals with various food commodities such as fresh produce, meats, seafood, nuts, juices and dairy products, and provides background on contamination routes and outbreaks as well as proposed processing methods for each commodity. Part two goes on to review current and emerging non-chemical and non-thermal decontamination methods such as high hydrostatic pressure, pulsed electric fields, irradiation, power ultrasound and non-thermal plasma. Thermal methods such as microwave, radio-frequency and infrared heating and food surface pasteurization are also explored in detail. Chemical decontamination methods with ozone, chlorine dioxide, electrolyzed oxidizing water, organic acids and dense phase CO2 are discussed in part three. Finally, part four focuses on current and emerging packaging technologies and post-packaging decontamination.With its distinguished editors and international team of expert contributors, Microbial decontamination in the food industry is an indispensable guide for all food industry professionals involved in the design or use of novel food decontamination techniques, as well as any academics researching or teaching this important subject. - Provides a comprehensive guide to the decontamination problems faced by the industry and outlines the current and emerging methods being used to solve them - Details backgrounds on contamination routes and outbreaks, as well as proposed processing methods for various commodities including fresh produce, meats, seafood, nuts, juices and dairy products - Sections focus on emerging non-chemical and non-thermal decontamination methods, current thermal methods, chemical decontamination methods and current and emerging packaging technologies and post-packaging decontamination
This book presents the latest developments in the area of non-thermal preservation of foods and covers various topics such as high-pressure processing, pulsed electric field processing, pulsed light processing, ozone processing, electron beam processing, pulsed magnetic field, ultrasonics, and plasma processing. Non-thermal Processing of Foods discusses the use of non-thermal processing on commodities such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products. Features: Provides latest information regarding the use of non-thermal processing of food products Provides information about most of the non-thermal technologies available for food processing Covers food products such as fruits and vegetables, cereal products, meat, fish and poultry, and milk and milk products Discusses the packaging requirements for foods processed with non-thermal techniques The effects of non-thermal processing on vital food components, enzymes and microorganisms is also discussed. Safety aspects and packaging requirements for non-thermal processed foods are also presented. Rounding out coverage of this technology are chapters that cover commercialization, regulatory issues and consumer acceptance of foods processed with non-thermal techniques. The future trends of non-thermal processing are also investigated. Food scientists and food engineers, food regulatory agencies, food industry personnel and academia (including graduate students) will find valuable information in this book. Food product developers and food processors will also benefit from this book.
Nonthermal Processing Technologies for Food offers a comprehensive review of nonthermal processing technologies that are commercial, emerging or over the horizon. In addition to the broad coverage, leading experts in each technology serve as chapter authors to provide depth of coverage. Technologies covered include: physical processes, such as high pressure processing (HPP); electromagnetic processes, such as pulsed electric field (PEF), irradiation, and UV treatment; other nonthermal processes, such as ozone and chlorine dioxide gas phase treatment; and combination processes. Of special interest are chapters that focus on the "pathway to commercialization" for selected emerging technologies where a pathway exists or is clearly identified. These chapters provide examples and case studies of how new and nonthermal processing technologies may be commercialized. Overall, the book provides systematic knowledge to industrial readers, with numerous examples of process design to serve as a reference book. Researchers, professors and upper level students will also find the book a valuable text on the subject.
Novel food processing technologies have significant potential to improve product quality and process efficiency. Commercialisation of new products and processes brings exciting opportunities and interesting challenges. Case studies in novel food processing technologies provides insightful, first-hand experiences of many pioneering experts involved in the development and commercialisation of foods produced by novel processing technologies.Part one presents case studies of commercial products preserved with the leading nonthermal technologies of high pressure processing and pulsed electric field processing. Part two broadens the case histories to include alternative novel techniques, such as dense phase carbon dioxide, ozone, ultrasonics, cool plasma, and infrared technologies, which are applied in food preservation sectors ranging from fresh produce, to juices, to disinfestation. Part three covers novel food preservation techniques using natural antimicrobials, novel food packaging technologies, and oxygen depleted storage techniques. Part four contains case studies of innovations in retort technology, microwave heating, and predictive modelling that compare thermal versus non-thermal processes, and evaluate an accelerated 3-year challenge test.With its team of distinguished editors and international contributors, Case studies in novel food processing technologies is an essential reference for professionals in industry, academia, and government involved in all aspects of research, development and commercialisation of novel food processing technologies. - Provides insightful, first-hand experiences of many pioneering experts involved in the development and commercialisation of foods produced by novel processing technologies - Presents case studies of commercial products preserved with the leading nonthermal technologies of high pressure processing and pulsed electric field processing - Features alternative novel techniques, such as dense phase carbon dioxide, ozone, ultrasonics, cool plasma, and infrared technologies utilised in food preservation sectors
The leading resource on ozone technology, this book contains everything from chemical basics to technical and economic concerns. The text has been updated to include the latest developments in water treatment and industrial processes. Following an introduction, the first part looks at toxicology, reaction mechanisms and full-scale applications, while Part B covers experimental design, equipment and analytical methods, mass transfer, reaction kinetics and the application of ozone in combined processes.
A comprehensive review of the many new developments in the growing food processing and packaging field Revised and updated for the first time in a decade, this book discusses packaging implications for recent nonthermal processing technologies and mild food preservation such as high pressure processing, irradiation, pulsed electric fields, microwave sterilization, and other hurdle technologies. It reviews typical nonthermal processes, the characteristics of food products after nonthermal treatments, and packaging parameters to preserve the quality and enhance the safety of the products. In addition, the critical role played by packaging materials during the development of a new nonthermal processed product, and how the package is used to make the product attractive to consumers, is discussed. Packaging for Nonthermal Processing of Food, Second Edition provides up to date assessments of consumer attitudes to nonthermal processes and novel packaging (both in the U.S. and Europe). It offers a brand new chapter covering smart packaging, including thermal, microbial, chemical, and light sensing biosensors, radio frequency identification systems, and self-heating and cooling packaging. There is also a new chapter providing an overview of packaging laws and regulations in the United States and Europe. Covers the packaging types required for all major nonthermal technologies, including high pressure processing, pulsed electric field, irradiation, ohmic heating, and others Features a brand new chapter on smart packaging, including biosensors (thermal-, microbial-, chemical- and light-sensing), radio frequency identification systems, and self-heating and cooling packaging Additional chapters look at the current regulatory scene in the U.S. and Europe, as well as consumer attitudes to these novel technologies Editors and contributors bring a valuable mix of industry and research experience Packaging for Nonthermal Processing of Food, Second Edition offers many benefits to the food industry by providing practical information on the relationship between new processes and packaging materials, to academia as a source of fundamental knowledge about packaging science, and to regulatory agencies as an avenue for acquiring a deeper understanding of the packaging requirements for new processes.
Food processing technologies are an essential link in the food chain. These technologies are many and varied, changing in popularity with changing consumption patterns and product popularity. Newer process technologies are also being evolved to provide the added advantages. Conventional and Advanced Food Processing Technologies fuses the practical (application, machinery), theoretical (model, equation) and cutting-edge (recent trends), making it ideal for industrial, academic and reference use. It consists of two sections, one covering conventional or well-established existing processes and the other covering emerging or novel process technologies that are expected to be employed in the near future for the processing of foods in the commercial sector. All are examined in great detail, considering their current and future applications with added examples and the very latest data. Conventional and Advanced Food Processing Technologies is a comprehensive treatment of the current state of knowledge on food processing technology. In its extensive coverage, and the selection of reputed research scientists who have contributed to each topic, this book will be a definitive text in this field for students, food professionals and researchers.
Packed with case studies and problem calculations, Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes presents the information necessary to design food processing operations and describes the equipment needed to carry them out in detail. It covers the most common and new food manufacturing processes while addressing rele