This book represents an updated review of the physiology of the carotid body chemoreceptors. It contains results in the topics at the frontiers of future developments in O2-sensing in chemoreceptor cells. Additionally, this volume provides data from studies carried out in other O2-sensing tissues including pulmonary vasculature and erythropoietin producing cells. It is a prime source of information and a guideline for arterial chemoreception researchers.
The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.
Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
Mitochondria in plants, as in other eukaryotes, play an essential role in the cell as the major producers of ATP via oxidative phosphorylation. However, mitochondria also play crucial roles in many other aspects of plant development and performance, and possess an array of unique properties which allow them to interact with the specialized features of plant cell metabolism. The two main themes running through the book are the interconnection between gene regulation and protein function, and the integration of mitochondria with other components of plant cells. The book begins with an overview of the dynamics of mitochondrial structure, morphology and inheritance. It then discusses the biogenesis of mitochondria, the regulation of gene expression, the mitochondrial genome and its interaction with the nucleus, and the targeting of proteins to the organelle. This is followed by a discussion of the contributions that mutations, involving mitochondrial proteins, have made to our understanding of the way the organelle interacts with the rest of the plant cell, and the new field of proteomics and the discovery of new functions. Also covered are the pathways of electron transport, with special attention to the non-phosphorylating bypasses, metabolite transport, and specialized mitochondrial metabolism. In the end, the impact of oxidative stress on mitochondria and the defense mechanisms, that are employed to allow survival, are discussed. This book is for the use of advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, integrative biology, biochemistry, bioenergetics, proteomics and plant and agricultural sciences.
This is the definitive, one-stop resource on preclinical drug evaluation for potential mitochondrial toxicity, addressing the issue upfront in the drug development process. It discusses mitochondrial impairment to organs, skeletal muscle, and nervous systems and details methodologies used to assess mitochondria function. It covers both in vitro and in vivo methods for analysis and includes the latest models. This is the authoritative reference on drug-induced mitochondrial dysfunction for safety assessment professionals in the pharmaceutical industry and for pharmacologists and toxicologists in both drug and environmental health sciences.
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.
Autism spectrum disorders are developmental disorders. Individuals with autism spectrum disorders develop differently. These differences are usually present in social interaction, communication, and sensory processing, and become visible through a wide variety of behavioral responses that differ from individuals without autism spectrum disorders. Despite significant research efforts, the exact causes of autism spectrum disorders remain poorly understood; however, researchers have gained extensive insights into possible pathomechanisms, even at the molecular level of cells. Many diagnostic criteria have been developed, adapted, and improved. The eight chapters in this book highlight the current state-of-the-art in many areas of autism spectrum disorders. Chapter 1 provides an overview of the epidemiology of autism spectrum disorders and the current knowledge of the underlying pathogenic mechanisms. Chapter 2 summarizes the diagnostic criteria and procedures and highlights present and upcoming therapeutic strategies. Chapter 3 reviews the adverse events and trauma in people with autism spectrum disorders. Chapters 4 and 5 focus on atypical sensory processing, and Chapter 6 discusses the genetic overlap of autism spectrum disorders with other neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD), depression, and schizophrenia. Chapter 7 focuses on the contribution of abnormalities in mitochondria, and chapter 8 discusses gut-brain interactions and a potential role for microbiota in autism spectrum disorders. This book is aimed primarily at clinicians and scientists, but many areas will also be of interest to the layperson.