This comprehensive volume covers the most recent advances in the field of spin physics, including the latest research in high energy and nuclear physics and the study of nuclear spin structure. The comprehensive coverage also includes polarized proton and electron acceleration and storage as well as polarized ion sources and targets. Many significant new results and achievements on the different topics considered at the symposium are presented in this book for the first time.
This book is devoted to the theory and phenomenology of transverse-spin effects in high-energy hadronic physics. Contrary to common past belief, it is now rather clear that such effects are far from irrelevant. A decade or so of intense theoretical work has shed much light on the subject and brought to surface an entire class of new phenomena, which now await thorough experimental investigation. Over the next few years a number of experiments world-wide (at BNL, CERN, DESY and JLAB) will run with transversely polarised beams and targets, providing data that will enrich our knowledge of the transverse-spin structure of hadrons. It is therefore timely to assess the state of the art, and this is the principal aim of the volume.An outline of the book is as follows. After a few introductory remarks (Chapter 1), attention is directed in Chapter 2 to transversely polarised deeply-inelastic scattering (DIS), which probes the transverse spin structure function g2. This existing data are reviewed and discussed (for completeness, a brief presentation of longitudinally polarised DIS is also provided). In Chapter 3 the transverse-spin structure of the proton is illustrated in detail, with emphasis on the transversity distribution and the twist-three parton distribution contributing to g2. Model calculations of these quantities are also presented. In Chapter 4, the QCD evolution of transversity is studied at leading and next-to-leading order. Chapter 5 illustrates the g2 structure function and its related sum rules within the framework of perturbative QCD. The last three chapters are devoted to the phenomenology of transversity, in the context of Drell-Yan processes (Chapter 6), inclusive leptoproduction (Chapter 7) and inclusive hadroproduction (Chapter 8). The interpretation of some recent single-spin asymmetry data is discussed and the prospects for future measurements are reviewed.
The notion of transversity in hadronic physics has been with us for over 25 years. Intriguing though it might have been, for much of that time transversity remained an intangible and remote object, of interest principally to a few theoreticians. In recent years transversity and transverse-spin effects in general have grown as both theoretical and experimental areas of active research. This increasing attention has now matured into a thriving field with a driving force of its own. The ever-growing bulk of data on asymmetries in collisions involving transversely polarised hadrons demands a more solid and coherent theoretical basis for its description. Indeed, it now appears rather clear that transversity and other closely related properties play a significant role in such phenomena.As part of a Ministry-funded inter-university Research Project, this workshop was organised to gather together experimentalists and theoreticians engaged in investigating the nature of transverse spin in hadronic physics, with the intent of favouring the exchange of up-to-date theoretical and experimental ideas and news on the subject. Over 70 physicists took part and very nearly all the major experiments involved in transverse-spin studies were officially represented, as too were the main theory groups working in the field. New results and new analyses sparked many interesting and lively discussions.
These proceedings present the most up-to-date status of deep inelastic scattering (DIS) physics. Topics such as structure function measurements and phenomenology, quantum chromodynamics (QCD) studies in DIS and photoproduction, spin physics and diffractive interactions are reviewed in detail, with emphasis on those studies that push the test of QCD and the Standard Model to the limits of their present range of validity, towards both the very high and the very low four-momentum transfers in leptonproton scattering.
Transversity 2008, the second workshop on OC Transverse polarization phenomena in hard processesOCO follows the first one held in Como after three years. As in that case, the event comes at the end of a two-years project financed by the Italian Ministry of Education. In the time between the two Workshops, decisive steps towards the revealing of the transverse spin structure of the proton were taken on both the theoretical and experimental sides. The milestone of the first extraction of Transversity and the Sivers function for the u- and d-quarks deserves a special mention. In the same period, historic experiments that in the last decade contributed to the first pioneering measurements in the SIDIS sector, have concluded their data taking, and their place is being taken by upgrades of existing or new facilities. These are the result of the new interesting phenomena which are appearing and call for additional experimental information and novel experimental techniques. Over 80 physicists took part in the Workshop. Equally involved were experimentalists and theoreticians engaged in investigating the nature of transverse spin. The heterogeneous public favoured vivid discussions and fruitful exchange of up-to-date theoretical and experimental ideas on this constantly evolving subject."
Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.
Getting down to the bottom line is what this proceedings digest is all about, as any physicist will tell you: spin is the fundamental concept in physics. The applications are pretty universal due to the fact that, using spin-related phenomena, physicists are trying to reveal the fundamental principles of nature – and things don’t come much more bottom-line than that. This volume is the proceedings of the 17th International Spin Physics Symposium which is a forum to discuss spin physics and related topics.
The proceedings of the 4th Italy-Japan Symposium on Heavy Ion Physics cover the following fields of nuclear physics: heavy ion nuclear reactions; nuclei under extreme conditions; nuclear astrophysics; photon detectors and physics; technology of RI beams and experimental instrumentation; application of RI beams.