Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465?A.


12 GeV Upgrade Project - Cryomodule Production

12 GeV Upgrade Project - Cryomodule Production

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.


CEBAF Upgrade

CEBAF Upgrade

Author:

Publisher:

Published: 2014

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK

The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.


Overview and Status of the 12 GeV Cryogenic System Upgrade At Jlab

Overview and Status of the 12 GeV Cryogenic System Upgrade At Jlab

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

As part of the planned Jefferson Laboratory's electron accelerator (CEBAF) power upgrade, ten additional superconducting RF cryomodules will be added to its accelerator linacs. Although physically the same size as each of the original 40 linac cryomodules, each new cryomodule will have approximately 4 times the acceleration power. To support the additional cryomodule heat loads generated, the existing 2K, 4600W Central Helium Liquefier (CHL) plant capacity will be doubled to a total of 9200W at 2K plus 24,000W at 35K for shield loads. The specified base line process cycle has been modeled after the laboratory s "Ganni Helium Cycle" process technology. In addition, a fourth physics experimental "Hall D" will be constructed which will have an additional stand alone 200W at 4K helium cryogenic plant. In October of 2008, Jefferson Laboratory (JLab) received approval for project "Critical Decision 3" construction phase status from the US Department of Energy.


Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

Author: G. Davis

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Three cryomodules have been designed and built as intermediate prototypes for the CEBAF 12 GeV upgrade. This paper will discuss the commissioning and operational experience with the second of these cryomodules, which was installed and commissioned in the Jefferson Lab 10 kW Free Electron Laser Facility. Within the cryomodule are eight 7-cell, 1497 MHz cavities. It was designed to accelerate 1 mA of beam in excess of 70 MV and to have the same footprint as a standard CEBAF cryomodule. The cryomodule was installed in parallel with the FEL beam line in the spring of 2004 and characterized simultaneous with beam delivery. It was installed in the beam line in the early summer of 2004 and has since been operated as part of an energy recovered linac with 5 mA of beam current and 75 MV accelerating gradient for extended periods of time. Additionally, it was operated at 1 mA of beam current and 80 MV of accelerating gradient for several hours without a trip. In the latter operating mode the beam current was limited by the injector setup.


An Overview of the Planned Jefferson Lab 12-GeV Helium Refrigerator Upgrade

An Overview of the Planned Jefferson Lab 12-GeV Helium Refrigerator Upgrade

Author:

Publisher:

Published: 2008

Total Pages: 14002

ISBN-13:

DOWNLOAD EBOOK

In February 2006, Jefferson Laboratory in Newport News, VA, received â Critical Decision 1â (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.


Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.


Development of a Cryomodule for the CEBAF Upgrade

Development of a Cryomodule for the CEBAF Upgrade

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long-term plans for the CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of those plans, an Upgrade Cryomodule, capable of providing more than three times the voltage of the original CEBAF cryomodule specification within the same length, is under development. In particular, this requires the development of superconducting cavities capable of consistently operating at gradients above 12 MV/m and Q(approximately)101°, new frequency tuners with excellent resolution, and cavity control systems.


Cryomodule Development for the CEBAF Upgrade

Cryomodule Development for the CEBAF Upgrade

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long term plans for CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of these plans, an Upgrade Cryomodule capable of providing more than three times the voltage of the original CEBAF cryomodule specification within the same length is under development. Development activities have been focused on critical areas thought to have maximum impact on the overall design. These have included the cavity structure, rf power coupling, cavity suspension, alignment, cavity tuning, and beamline interface. It has been found that all design and development areas are tightly coupled and can not be developed independently. Substantial progress has been made toward an integrated design for the Jefferson Lab Upgraded Cryomodule.


CEBAF Energy Upgrade Program Including Re-work of CEBAF Cavities

CEBAF Energy Upgrade Program Including Re-work of CEBAF Cavities

Author:

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Thomas Jefferson National Accelerator Facility, Jefferson Lab, is planning an upgrade of the CEBAF accelerator from a maximum energy of 6 GeV to 12 GeV and from 3 to 4 experimental halls. This paper will discuss the plans for upgrading the energy of the machine which requires improvements of the existing Super Conducting Radio Frequency (SRF) cryomodules and the additions of ten newly designed high performance SRF cryomodules.