Introduction To Commutative Algebra

Introduction To Commutative Algebra

Author: Michael F. Atiyah

Publisher: CRC Press

Published: 2018-03-09

Total Pages: 140

ISBN-13: 0429973268

DOWNLOAD EBOOK

First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.


Introduction to Algebra

Introduction to Algebra

Author: Peter J. Cameron

Publisher: Oxford University Press, USA

Published: 2008

Total Pages: 353

ISBN-13: 0198569130

DOWNLOAD EBOOK

This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics.


An Invitation to General Algebra and Universal Constructions

An Invitation to General Algebra and Universal Constructions

Author: George M. Bergman

Publisher: Springer

Published: 2015-02-05

Total Pages: 574

ISBN-13: 3319114786

DOWNLOAD EBOOK

Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.